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FOREWORD 

Once again the resort city of Gatlinburg, Tennessee, was the scene of 

a meeting devoted to Project Sherwood (controlled fusion research) when a 

small group of theorists (and a few experimentalists) met there on April 27 

and .28, 2959. Unlike the previous meeting here, which was in Jlllle of 1956 

and which covered all aspects of the Project, this meeting was limited to 

the subject of "Theoretical Aspects of Controlled Fusion Research." The other 

striking difference in the two meetings was a more relaxed attitude a.s a result 

of the complete declassification of the project in the interim. Unfortunately, 

the difficulties of nature are not legislated away as easily, and the contents 

of the papers reflect the degree of concern with the various plasma mis-

behaviors. 

The present report represents a compilation of the papers presented at 

this conference. Some authors have chosen to submit only the abstract of 

their talks since they plan to publ:ish in the open literature shortly. 

The conference committee wishes to express its thanks to Mr. D. D. Cowen 

of ORNL who, with his staff, was responsible for the smooth handling of the 

local arrangements. We also owe a debt of gratitude to Mrs. Lorraine Abbott 

for her expert advice and assistance in preparing this report. 

Committee: 

A. Simon, Chairman 
R. G. Alsmiller, Jr. 
T. K. Fowler 
E. G. Harris 
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THERMALIZATION OF A FAST ION IN A PLASMA* 

Herbert C. Kranzer 
Institute of Mathematical Sciences 

New York University 

Abstract 

PAPER 1 

A fast ion is injected into a plasma in equilibrium. We deter-
mine the time history of the probability distribution of this ion in 
velocity space. This is done by numerical integration of the linear-
ized, space-independent Fokker-Planck equation with both the ion-
ion and ion- electron terms retained. The mean time of thermaliza-
tion is calculated for several widely separated injection velocities. 

Suppose a single ion of velocity is injected at time t = into a 
homogeneous plasma in thermal equilibrium with no external electromag-
netic fields present. The probability distribution t) of this ion in 
velocity space satisfies the space-independent Fokker- Planck equation 1 

(1) 

and the initial condition 

* 

1. 

(2) 

The work presented in this paper is supported by the AEC Computing 
and Applied Mathematics Center, Institute of Mathematical Sciences, 
New York University, under Contract AT(30-1)-1480 with the U. S. 
Atomic Energy Commission. 

See Rosenbluth, MacDonald and Judd, Phys. Rev., 107, 1 (1957), or 
Grad, Thermonuclear Reaction Rates in an Electrical Discharge, NY0-
7977, Inst. of Math. Sciences, N. Y. Univ., Jan. 1958. 
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The values of the dynamical friction coefficient ar and the dispersion co-
efficient hrs to be taken in {1) are those corresponding to the {Maxwellian) 
distributions of ions and electrons in the original plasma. 2 

We introduce the dimensionless independent variables 

x = f/(RT) 1 / 2 

4 
t 

Ml/2{kT)3/2 

{3) 

(4) 

where T is the plasma temperature {assumed the same for electrons or 
ions), M is the ion mass, k is Boltzmann's constant, R = k/M, e is the 
electronic charge, n the number density of ions or electrons, and 

= 
3 (kT) 3 / 2 

2 3 e 
(5) 

is the ratio of the Debye length to the mean distance of closest approach in 
a Coulomb encounter. (All quantities are expressed in cgs electrostatic 
units.) Then equations (1) and (2) become conditions of the form 

{6) 

= /(RT)l /2 
. 

{7) 

on the dimensionless probability distribution 

3/2 . 
= (RT) t) (8) 

Our ultimate goal is to numerically integrate (6), (7), a system in-
volving two velocity dimensions and one time dimension. Here we assume 
spherical symmetry in velocity space. If we are interested in following 
only the speed of the injected test ion, this will be an excellent approxima-
tion. 

Hence we set 

ff t) dwy = g(x, t) 

x =x 

and obtain for g the differential equation 

ag = (xGg + G 
2 

x 

2. See Grad, op. cit., for the precise form of these coefficients in this 
case. 

4 

(9) 

(10) 



the initial condition 

-2 g(x, -

G ::: G(x) is defined as 

x G(x) = F(x) + pF(-) p 

where (at least for singly charged ions) 

2 p = M/m 

is the ratio of the ion to the electron mass and 

1 lx /2 F(x) = e dy -
2 

-x /2 e 

(11) 

(12) 

(13) 

(14) 

We proceed to the numerical solution of (10), (11) by finite differences. 
We approximate (10) by an explicit difference equation; i.e., we take a rec-
tangular mesh with a spacing in velocity and in time and replace 

by a forward difference. To reduce truncation error, the right-hand side 

of (10) is first expanded into the form 

2 
= [(xG' + G)g + (G1 + xG) + G g] 

2 2 x 

2 
= C(x)g + A(x) + B(x) 

(15) 

The x-derivatives of g in (15) are then replaced by centered differences, 
while the coefficients A, B, C are evaluated analytically. Because A(x) 

becomes infinite at x = the first velocity mesh point is taken at x 

centered at this point are computed by assuming g to be an even 
function of x. The truncation error of this scheme is of the order of 
or 

-2 1 
Since the maximum of x G occurs at x and is equal to the 

Courant-Friedrichs-Lewy stability criterion is satisfied if 

= < 3 1 88 -
For safety, we choose = 1. 75. 

(16) 

In most of the cases considered below, the initial values (11) of g are 
represented numerically by choosing to coincide with a mesh point and 
taking g(x, to be l at this mesh point and zero at the others. In 
the one case where > this prescription would cause oscillations which 
reach unacceptably large amplitudes before damping out. The initial values 
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of g in this case are chosen to be the values g would have at some later 
time (small relative to the time scale of thermalization) if the coefficients 
A, B, C in (15) had everywhere the values they have at 

exp [ 
g(x, 0) :::: 

-(x-x 
(17) 

The choice of numerical upper bounds for x and is facilitated by the 
fact that the exact sol.ution of (10), (11) approaches as - oo the Maxwellian 
distribution 

g (x) = 
M 

2 
-x /2 

e (18) 

Thus for an x not much larger than the solution remains altogether neg-
ligible for all time. We take such an x for an outer boundary and impose 
there the simple boundary condition g = The upper bound on is deter-
mined by the computation itself: we stop computing whenever g(x, is as 
close to gM(x) as the numerical approximation allows. 

Numerical computations have been performed for a plasma consisting 
of deuterium, for which p = 5948. Four widely spaced injection veloci-
ties were chosen: = = 1. 55, = 9. 7, and = The 
first of these was chosen to provide a reference relaxation time. The sec-
ond corresponds to the center of the initial distribution used by Rosenbluth. 3 

The choice of the last two can be most easily understood by reference to the 
"friction curve" - the plot of the total friction coefficient (cf. (6)) as a 
function of x. This curve begins at zero (for x = rises to a maximum 
value at about x = 1. 3, decreases to a minimum between x = 1. 3 and 

x = P, rises to a second maximum value at x = 1. 3p, and finally falls 

off toward zero in proportion to x - 2 The velocity x = 7 lies at the cen-
tral minimum, while x = is approximately that velocity for which 
reaches on its final downward curve the same value as it has at x = 9. 7. 

The case = requires smoothing of the initial data. 
of smoothing (see (17)) was taken as 37. 7. 

The time 'T 

The numerical parameters used in the four cases are summarized in 
Table I. 

In the three cases where was positive, the solutions behave quite 
similarly (see Fig. 1). At first, the initial delta-function diffuses into a 
Gaussian whose width is determined by the dispersion coefficient B(x) and 
whose peak moves toward lower velocities at the rate A(x). This regular 
evolution continues until the inner tail of the Gaussian reaches x = (Fig. 
lC). At that time, a second peak forms at x = (Fig. lD}. This peak 

3. MacDonald, Rosenbluth, and Chuck, Phys. Rev., 107, 351 (1957). 
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Table I - Details of the numerical computation 

Injection velocity 1. 55 9.7 

Smoothing time ' 37.7 

Velocity mesh 1 

Time mesh 

Upper velocity bound Xmax 

rapidly increases in height and width (Fig. lE), completely swallowing up 
the original Gaussian, until (Fig. lF) it somewhat surpasses the Maxwellian 
distribution (18). Finally (Fig. lG) it slowly falls back and broadens, 
approaching (18) exponentially. 

When = the initial distribution is just an extreme case of the 
pattern of Figure lF. Hence an exponential decay toward the Maxwellian 
distribution begins immediately. 

Some of the quantitative details of this general picture are given in 
Table II. In the case = the smoothing time is included in all 

ed times. A physical idea of the size of the units involved may be ob-

Table II 

Injection velocity 1. 55 9.7 

Time 'T 1, at which central peak 
to form 

x of outer peak at this 1. 11. 75 

at which outer peak 1. 3 

at which exponential 3.9 261 
.begins 

constant 'T of exponential 3 8 15 

thermalization time 
3 12 276 

of mean thermalization 
to Spitzer collision time 

These computations were performed on the IBM 704 at the Institute of 
Sciences, New York University. 
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g(x,t) 

FIG. IA 

FIG. lB FIG. 

FlG G. 10 G, 

-----

-- g(x) 

SUCCESSIVE STAGES OF THERMALIZATION 
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by noting that the root mean square plasma ion speed corresponds to 
1. 73 while the r. m. s. electron speed corresponds to x = p 

Furthermore, the Spitzer ion-ion collision time4 

(19) 

equal to 3. 62 units of tau. 

Spitzer, Physics of Fully Ionized Gases, Interscience, New York, 1955. 
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A VARIATIONAL CALCULATION OF PLASMA 

TRANSPORT PROPER TIES 

Ira B. Bernstein 
Project Matterhorn, Princeton University, Princeton, N. J. 

and 

Bruce Robinson 
Physics Department, Princeton University, Princeton, N. J. 
and Los Alamos Scientific Laboratory, Los Alamos, N. M. 

Abstract 

A variational principle is given for the electrical 
conductivity of a fully ionized plasma. Use of a very 
simple trial function yields Spitzer's value to within 2 
The method can be generalized so as to apply to all trans-
port coefficients. 

The Fokker-Planck Equation 

PAPER 2. 

The distribution function f, describing the joint distribution in 
position and velocity of electrons colliding with a locally equal number of 
infinitely massive protons in an external electric field consistently 
neglecting magnetic effects1, is determined by the Fokker-Planck equation 

+ v + e 
m 

The velocity space current density l is given by 

(1) 

1. M. N. Rosenbluth, Wm. M. MacDonald, and D. L. Judd, Phys. Rev. 
107, 1 (1957). 

10 



4 
a av m 

d
3 f(y') 

-

1 a f + av s d 3 v -

+ a f v2 
2 

A 12 N 

av 

{ k T 
2 e 

} , 3 v 

3/2 

It is convenient to transform the above expression to a more symmetric 
form by integration by parts. Namely since 

1 f 
a 2 -av' v' 

1 d3 af a2 
-. av av , 

on defining 

= v - v' , 

one can write eq. (2) in the form 

{ v' [f(_v') _ f{v) g
2 

- 3 m g 

+ 
av } . 

(2) 

( 3) 

( 4) 

(5) 

Assume that there is spatial homogeneity and that there is only a 
external electric field Then if is treated as a perturba-

tion, in terms of a quantity , of the same order as , one writes 

f = (1 + ) (6) 
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where 

f = 
2 

- m v /2 kT e 

Then, on linearization2 of eq. (1), there results 

af 
k f o = 

The linear operator K is defined by 

= 
4 e 
2 m 

(v)f -
- - 3 

(7) 

( 8) 

- - - g 
(9) 

+f (v) v 
- 3 . 

v 

Define the inner product ( K by 

(10) 

If one takes the expression obtained by employing eq. (9) directly with 
eq. (10), interchanges v and v', and then forms one half the sum of the 
former and latter expressions,-there results 

( - { d 3vd 3v'[ - a ]( - J : 
m - - - - g 

+ d3v fo : v } . 
v 

It .is obvious from eq. (11) that K is a symmetric operator, i.e. 

2. S. Chapman and T. G. Cowling - The Mathematical Theory of Non-
Uniform Gases, Second Edition, Cambridge, 1953. 
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moreover that K is a negative operator, i.e. 

( 13) 

This latter conclusion follows immediately from the observation that for an 
arbitrary vector 

a a: (g ..! - /g = a -

Electrical Conductivity 

Multiply eq. (8) by and integrate with respect to v Observe 
that to lowest order in the parameter of smallness 

<v> 

Ne 
kT 

= 

= 

3 d v f/N 

3 d v 

< v > = -

(2) Now it follows from the form of eq. (8) that must have the form 

(14) 

(15) 

(16) 

(17) 

( 18) 

is the mean velocity lies along the electric field. Thus the electrical 
can be written, on employing eq. (16) 

= (19) 
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Variational Principle 

Define 

(20) 

(21) 

Note that 

t 

= _kT l 
2 + 2( + 

(22) 

Thus the condition that be stationary is 

(23) 

Given any solution of eq. (23) one can always find a constant c such that 
= satisfies 

= ' (24) 

which is just eq. (8). This renormalization clearly does not change the value 
of Moreover when satisfies eq. (23) (or eq. (24)) 

= k T = (25) 

Thus is stationary for variations in about that function which satisfies 
eo_. (24), and moreover the associated external value of is just the desired 
conductivity 

14 



Suppose that satisfies eq. (23) and that is an arbitrary and 
not necessarily small variation. Then it follows from eq. {22) that 

-
(26) 

k 2 } = + + ] - K 

In order to determine the sign of the quantity in curly braces observe 
that since K is a negative operator, 

o + + 

[ + 2x + x2 (27) 

2 
2 

2 [x + ] + -

x is arbitrary. 

(28) 

{ + - o 

the variational principle is an absolute maximum principle, and the 
extremum unique. 

The conductivity of a plasma has been computed by Spitzer and Harm (3) 
numerical integration of eq. (8). The results are reported in terms of 

the oonductivity of a Lorentzian gas, namely a plasma in which the elec-
collide only with infinitely massive positive ions, and 

25/2 (kmT)l/2 
L 11

3/ 2 
kT 

2 
e 

L. Spitzer and R. Phys. Rev. 89, 977 (1953). 

15 
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Thus 

. p1tzer = 582 . ' 

while the trial functions = v/ and v
2 

yield respectively 

= 

(31) 

= 

The variational principle can be generalized to an arbitrary mixture of 
neutral and charged particles in a magnetic field and has been employed for 
this purpose by Walter Marshall (4 ), using the usual two body collision integrals 
rather than the Fokker -Planck equation. 

4. Walter Marshall - The Kinetic Theory of an Ionized Gas, A. E. R. E. 
T/R 2247, 2248, 2419, Atomic Energy Research Establishment, 
Harwell, Berkshire, 1958. 
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TEST PARTICLES IN A PLASMA 

M. N. Rosenbluth 
John Jay Hopkins Laboratory 

Abstract 

charged particle is considered to move in a preassigned orbit. The 
is treated as a fluid, i.e., a med.iwn in which e o, such 

and ne remain constant. The plasma becomes polarized so that there is 
of charge around the test particle. The test particle is not at the 

cal center of the cloud, so that there is an electric field acting on it. 
procedure gives the usual frictional drag, except for the proper effective 

There is an additional drag due to the emission of plasma waves. By 
a Maxwell distribution of "test particles, " the total plasma wave 

is calculated. 

test particle problem has been solved in the absence and in the presence 
constant magnetic field. With a magnetic field, the drag parallel to the 

field resembles the zero field case, except that the Lannor radius may replace 
Debye length in the long wavelength cutoff, The drag perpendicular to the 

has no counterpart in the zero field case. It exhibits some qualitatively 
newfeatures that are due to resonant interactions with field particles. 

17 



PAPER 4 

KINETIC EQUATIONS FOR A PLASMA 

N. Rostoker 
John Jay Hopkins Laboratory 

Abstract 

If in the Liouville equation, the coordinates of all particles but one, but 
two, etc., are integrated.out, one obtains a chain of equations for the one-, 
two-, etc., body distributions. The chain can be solved rigorously by expanding 
in powers of the charge. The lowest order means the limit 

such that e/m and the ne remain constant. In this case the particles are 
i.ndependent, and the one-body distribution obeys the collisionless Boltzmann 
equation. In the next order the solutions for the n-body functions can be 
expressed in terms of two-body correlation functions. 

If no particles are distinguished the equation for the one-body distribution 
is the Boltzmann equation. If one particle is distinguished the symmetry of 
density in phase space must be reduced.. The equation for the distinguished 
particle is the Fokker-Planck equation. The test-particle problem is 
incosistent approximation which is first order in the charge of the 
particle and zero order in the other charges. 

The consistent test-particle problem is formulated and solved for the case 
of zero external magnetic field. The resulting Fokker-Planck equation. contains 
new terms that arise from the emission of plasma waves. 

18 



B. WAVES IN PLASMAS 
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MICROWAVE EMISSION FROM HIGH TEMPERATURE PLASMAS* 

David B. Beard 
University of California, Davis, California 

Missiles and Space Division, Lockheed Aircraft Corp. 

Abstract 

PAPER 5 

The emission of cyclotron radiation from near-relativistic plasma 
electrons has been estimated. The calculation presented here takes 
into account the relativistic effects on the frequencies radiated by 
energetic electrons. Radiation parallel to the confining magnetic 
field is broadened by the Doppler effect or the relativistic mass 
dependence on the electron energy. Radiation perpendicular to the 
field is in a broad distorted line due to the relativistic mass varia-
tion. Radiation is also emitted in higher harmonics of the fundamental 
cyclotron frequency due to the asymmetry in the laboratory frame of the 
electric field resulting from the electron charge. The emission has 
been calculated by integration over the velocity spectrum of a Maxwel1-
Boltzmann distribution in electron velocity and summed over all the 
contributing harmonics. The results of Trubnikov and Kudryavtsev, 
reported at the September, 1958, Geneva Conference, are roughly sub-
stantiated. 

Aside from its obvious application as a diagnostic tool some of the current 
interest in cyclotron radiation emitted from hot plasma stems from a recent pre-
dictionl that it would amount to a serious energy loss. The calculation I wish 
to report on estimated the plasma cyclotron emission by calculating the index 
of refraction and absorption coefficient of the plasma. From these optical 
constants the absorption of incident radiation was determined and by invoking 
Kirchhoff's relation the endssion was found. The main feature of the calcula .. 
tion was that the variation in resonant frequency due to the relativistic 

*This report differs from the talk presented at the meeting. In the integration 
over velocity space an unfortunate error in sign was made with the result that 
the emission was greatly underestimated. Luckily, I. Bernstein and M. Rosen-
bluth had been looking into the problem (See discussion,) and recognized that 
an error had been made in the integration. The author is deeply indebted to 
them both for kindly calling his attention to the error and preventing its 
further propagation. 

1. B. A. Trubnikov and v. s. Kudryavtsev, Second United Nations Conference on 
Peaceful Uses of Atomic Energy, A/conf 15, p. 2213 (1958). 
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behavior of the electrons was taken into account. The electrons r.esonated 
at differing frequencies with the result that the phase of an incident wave 
was simultaneously advanced by same electrons and retarded by others. Thus, 
the index of refraction for all the electrons was greatly reduced. The 
absorption or emission occurs in a greatly broadened frequency interval and 
diminished line height. 

Unf'ortunately, the only generally available account of Trubnikov and 
Kudryavtsev•s work is rather skimpy in detail of just how the broad distri-
bution of emission with frequency was obtained from an integral over velocity 
space. To better understand the Russian work I have decided not to attempt 
to summarize myown lengthy calculation in a f'i£teen-minute paper, but instead 
to start off by computing the emission spectrum directly. There are two inde-
pendent sources of line broadening, one due to the collision frequency of the 
electrons with the ions and other electrons and the second due to the relativ-
istic change in resonant frequency. These two line profiles must be folded 
together. The relativistic spread in non-relativistic approximation is assumed 
to be given by a Maxwell-Boltzmann distribution in velocity space. For radia-
tion perpendicular to the magnetic field (also in the case of a mirror machine 
with small field gradient along the field) the electron velocity ccmponent 
perpendicular to the field is of interest 

(1) 

The frequency shift of is due to the relativistic change in mass 
of the electron, i. e., = v /c2. 

For radiation paral1el to the magnetic field taken to be along the axis, 
when large electron velocities parallel to the magnetic field occur, the 
DoPPler shift vz/c is of interest. 

Particularly in a magnetic mirror geometry and in any geometry for fre-
quencies above the fundamental frequency Eq. 1 is of primary interest. The 
resultant line profile is akin to a Voigt profile: 

(2) 

c2. 
. 

where is the total intensity emitted by a single electron and the reson-
ant frequency is given by (1 - x), where vp2/c2. For << 

and this integral is essentially zero for plasmas of laboratory 
dimensions; but if the integral is /2kT) (1 -
and Eq. 3 becomes 

(4) 
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is, the emission at frequency is that due to the number of electrons 
at a resonant frequency equal to The emission and therefore the 
is thus a very slowly varying function of the frequency compared to 

would be if there were no relativistic broadening. Since the absorp-
tion coefficient is a slowly varying function of frequency the Kramers-Kronig 
dispersion relation between the index of refraction and the absorption coeffi-
cient tells us that the index of refraction is very mu.ch closer to unity than 
it would be if the relativistic effects were not included. Thus, the change 
in refractive index at any point within the plasma is too gradual to result in 
a "shiny" highly reflective plasma. Therefore, we may compute the plasma 
emission by merely integrating Eq. 4 over the thickness of the plasma; if the 
result exceeds emission from a black body surface, however, the latter emission 
is predicted.a As a result, we would expect fundamental cyclotron emission from 
a plasma with the brightness of a black body surface over a band width of 

where and are given by the minimum and maximum field strengths 
respectively and L is the plasma length times a coefficient roughly equal to 

where e is the electronic charge. 

(5} 

So much for the fundamental emission. Schwinger2 has evaluated the emis-
sion of harmonics of the fundamental cyclotron frequency of individual electrons 

a function of electron velocity and angle, of the emitted radiation to 
the plane perpendicular to the magnetic field. For v2 < < c2 the emission of 
the harmonic frequency 1) compared with the fundamental frequency (r = 1) 
is given by 

( 6) 

to the derivation of Eq. 4 we obtain 

(7) 

(8) 

J. S. Schwinger, Phys. Rev. 75a 1912 (1949) 
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when integrated over and summed over r. Note that instead of the usual 
we would have Compared with the fundamental emission the

harmonics are suffocated by the factor [ { (r2c()0 2 - / j cos2 

For plasmas of 10-100 ems in diameter the emission is an appreciable 
fraction of black-body emission for frequencies only a few multiples of the 
fundamental frequency. The emission decreases rapidly with increasing fre-
quency. For plasma conditions N0 = H = gauss, kT kev, the 
emission for = is less than L of a black body where L is the 
plasma diameter. Since the emission depends only linearly on N0 while the 
power production in a Sherwood device depends quadratically on N0 the relative 
importance of the two processes depends linearly on N0 , higher densities de-
creasing the relative importance of the cyclotron emission. As Trubnikov and 
Kudryavtsev have observed only the high energy tail of the Maxwell-Boltzmann 
electron distribution is affected by energy losses due to cyclotron emission. 
The energy loss is further reduced by the reflectivity of the walls and field 
windings. The energy loss compared to a black body freely radiating in the 
absence of radiation reflectors is given by A(l - R) / (1 - R + RA) where A 
and R are the plasma absorptivity and wall reflectivity respectively. Thus 
compared to a black bod,y the energy loss is 1 - R A 1 - R and is 

A - A/(l - if A < 1 - R. 

CHAIRMAN HARRIS: The floor is open for discussion. 

DR. POST: I have a series of short remarks to make in response not only 
to the paper but to Jim Tuck's remarks, and may I treat them as a series of 
questions falling back from the approximation to the X. First let us suppose 
that you are wrong and the Russian calculation is totally right. The Russian 
calculation shows, as we all know, that the radiation in the fundamental cyclo-
tron frequency is totally innocuous and it is the harmonics that are important. 
Furthermore, it simply points up, as we know, that the relativistic effects 
here are dominant; that it really illustrates it is the high energy electron 
irradiation that produces the majority of the radiation. So the question of 
whether these high energy electrons exist in the system and their rate of 
energy transport to them is important. 

There is at least one case, and t have to cite our own. In the tensor 
mirror ma.chine there are good reasons to believe that the high energy tail is, 
in fact, missing, the reason being that one cannot find electrons above a 
certain potential, which is the plasma potential, and these electrons are just 
the ones that we radiate. So if one puts any reasonable gas in the plasma po-
tential he finds this effect is very small. Suppose I am wrong and the effect 
is large, is it, indeed, an effect that will lead to the net escape of energy. 
Here we can fall back on evidence from the theory of metals and the behavior of 
metals up to the short infrared, and find that any reasonable disposition of a 
surrounding conductance shell would reduce this radiation by at least two 
orders of magnitude, even if it existed. 

Thirdly, I tthinkk there is real reason to suspicion (and there are several 
cases for this) that the electron temperatures in many of these devices may be 
a good deal lower than we have in the past assumed and the radiation for this 
reason alone becomes totally innocuous. So I quite agree with you that one can 
take one of the worst assumptions and it appears that the situation is very bad. 
However, I think there are many reasons for believing that these assumptions 
are not valid , 

DR. BEARD: With reference to the conductance requirement, I don't Jm.ow if 
you know I was at Livermore, spending the afternoon with Chuck Wharton. We ex-
plored this reflection business and what I have reported on is just the emission 
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the surface of the plasma. As mentioned in the report, emission from a 
surrounded by highly reflecting walls is very much enhanced over the 

emission from a bare plasma surface. 

DR. POST: I mean, you build up the energy of the fundamental density out-
but you calculate the energy transported through that, and this is very low. 

DR. ROSENBLUTH: I would like to make a comment. I have done essentially 
same sort of calculation as Beard has, namely, to calculate the absorption 

the plane wave in the plasma. 

Now the situation is slightly more complicated because if you calculate 
complete dispersion equation you find that there is a condition for the 

radiation being the same as the single particle radiation. It is a very 
condition; namely, that the frequency of the emitted radiation that we are 

has been well above the plasma frequency, and this is the condition 
in general well satisfied. But if that condition is satisfied then the 
technics for calculating the absorption coefficient done the proper 
the exact same results as you get from the emission calculation by 

I think there is one mistake that the Russians made; namely, they took 
the propagation constant perpendicular to the magnetic field. In fact, 

propagation coefficient is a strong function of the angle with the magne-
field; so that you really do not fill up the black-body distribution to the 

which they mention but only in a narrow cone around the distribution. 
estimates would indicate that cases of interest may be a factor of 10 

in radiation. I mean my feeling is that the Russian calculation is 
correct, although there is· this factor of 10 or 20 down which is an 
factor. 

Then I furthermore agree with Dick in that I think essentially when you 
the effects of reflecting walls, the effect is by no means disastrous 

thermonuclear machines. 

DR. BERNSTEIN: I do a similar calculation and I agree substantially with 
If you look at the coherent response of the plasma, the wave perpen-

to the magnetic field, you see that it is essentially transparent to 
so therefore any fluctuation to give radiation in this direction is 

mistake and this substantiates the Russian claim. As Marshall contends, this 
only to cut the total emission down by a number, say, of no more than 20 

30, and then there is conal emission. 
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RADIAL OSCILLATIONS OF CYLINDRICAL 
PLASMA CONFINED BY AXIAL MAG111ETIC FIELDS 

J. B. Taylor 
Atomic Weapons Research Establishment, 

Aldermaston, Berks., England 

Abstract 

Radial oscillations of a cylindrical plasma, confined by 
an axial magnetic field have recently been observed (3), 
(4). In this paper these oscillations are discussed on 
the basis of the magneto-hydrodynamic equations. The 
effect of the proximity of a conducting wall and of 
differing mass distributions wit_hin the plasma are con-
sidered. It is found that the frequency is insensitive 
to these factors and depends only on the mass of plasma 
and the confining magnetic fieldo These oscillations 
should therefore provide a useful measure of the mass of 
gas swept up in a fast pinch device. 

Introduction 

PAPER 6 

In fast-pinch devices, whether produced by axial or azimuthal 
currents, the compressed plasma naturally does not come immediately 
to rest in its equilibrium position but undergoes a series of radial 
oscillations about a mean position which may itself be changing 
slowly with time. In the case of the z-pinch, in which the current 
is axial, these oscillations have been noted by Tuck (1). 

Recently much interest has been shown in devices producing pinches 
by axial magnetic fields such as Scylla (2), Thetatron (3) and the 
apparatus used by Kolb (4). Niblett, using the Thetatron, and Kolb 
have observed radial oscillations in their experiments, and in view of 

1. J. L. Tuck - Geneva II, p. 1860. 
2. W.C. Elmore; E.M. Little; W.E. Quinn - Geneva II, p. 356. 
3. G0 B.F. Niblett - to be published. 
4. A.c. Kolb - Geneva II, p. 345. 
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it is interesting to discuss these oscillations in terms of con-
magneto-hydrodynamics. As a model for this system we consider 

cylinder of perfectly conducting plasma of radius r confined within 
concentric cylindrical conductor of radius R carrying an azimuthal 

The magnetic field is parallel to the axis. The type of 
in which we are interested is distinguished by the fact 

involves only radial motion. In the tenninology of instability 
it corresponds to m o k o. 

take the magnetic field to be purely axial and the motion purely 
then the electrical field is azimuthal. Using the conventional 

of magneto-hydrodynamics the equation for small oscillations 
a mean position of equilibrium can be derived along with approp-
boundary conditions. Analytic solutions can be obtained for 

idealised situations including the following: 

An elementary situation is that in which the density, pressure and 
are uniform within the plasma, i.e. the plasma is confined by 

currents. In this case the angular frequency of oscillation 
be expressed as 

1 g (x) ( 1 + ) 

confining magnetic field, M the mass of plasma per unit 

= -1)' 
2 B2 

will generally be very much less than unity since for rapid 
radial motions the plasma has an effective near two, and the other factor 

always less than unity. 

The parameter is connected with the pinch ratio R/r by 

- 2 2 
r 

of g(x) are given in Table I. 

1/x .625 

2.874 

1.5 7.5 

2.645 2.458 

be seen that the maximum effect which the wall can have is to 
the f'requency by a factor 1.6. The influence of the gas pressure 

represented will be small, so that the frequency can, for 
purposes, be expressed in terms of the vacuum magnetic field, 

is deter:nined by the external current, and the mass of plasma per 
length of the discharge. 
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Non-uniform density. 

Under the experimental conditions which are envisaged the plasma 
will initially have a greater density near its surface, having been 
swept up to some extent by the "snowplough" effect produced by the 
imploding current sheath end we would like to examine configurations 
which have a density profile which increases with radius. This can be 
done quite simply if we make the approximation that the adiabatic law 
with = 2, applies throughout the motion. [This approximation should 
be accurate as far as the oscillatory motion itself, for this involves 
two degrees of freedom; it will be less well satisfied for the 
equilibrium configurationo ] 

An analytic form of density profile which may represent the experimental 
sitllation fairly well is 

p = 2s - 2 a r 

then the angular frequency be expressed. 

= 

where R /r and g is given below 

A= 1 1.25 1.5 

s = 1 3.83 3.16 2.87 
2 3.17 2.77 
4 5.56 3.22 2.73 

3.33 2.68 

s 1. 

2.0 

2.64 
2.49 2.28 2. 22 

2.18 2.12 
2.31 2.00 

The effect of varying the distribution of mass is very small indeed 
if the discharge is reasonably well compressed. 

The limiting case s = oo corresponds to the mass being concentrated 
in a thin cylindrical shell, a distribution which can be treated as a 
problem in single particle dynamics, and for which 

= 

Large Oscillations 

Some guidance on the effect of finite amplitude can be gleaned from 
a study of the specially simple, but probably quite realistic, case of 
the plasma being confined in a thin shello 

In discussing large amplitude oscillation the mean position and the 
equilibrium no longer coincide so that equilibriurn is not a convenient 
reference point. Instead it is convenient to use the maximum and minimum 
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radii which the shell achieves in its oscillation denoted by r 2 and r 1 respectively. 

The equation of motion for the shell is soluble in te:r;ms of elliptic 
integrals and the frequency of oscillation can be written 

= 
-

where h is tabulated below and x = 

2 

-
o.6 

1.223 1.196 
1.571 1.571 

o.6 

- -
- -

-
1.137 
1.571 1.571 

It will be seen that provided the amplitude of oscillation is such 
that the maximum radius of the plasma. is less than two-thirds that o.f 
the containing conductor the frequency of large oscillations is negligibly 
different from that of small oscillationso 

Conclusions. 

The frequency of oscillation of a cylindrical discharge confined by 
axial magnetic fields has been calculated in some idealised configurations. 
From the results one can deduce that for a reasonably well pinched dis-
charge the frequency of oscillation is given by the characteristic 
frequency' 

multiplied by a factor which is insensitive.to the ratio of plasma to 
magnetic pressure, to the actual distribution of plasma mass and to the 
amplitude of oscillation. We can conclude therefore that a measurement 
of· this frequency allied to that of the confining field (which are about 
the simplest measurement one makes on a plasma device) form a good method 
of assessing the mass of gas which is swept up into the plasma end involved 
in the oscillation. It would, however, be very difficult to deduce 
temperature, the ratio ofa plasma to magnetic pressure, or the distribution 
of plasma density. 
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PAPER 7 

HYDROMAGNETIC ENERGY TRANSPORT IN IXION 

W. B. Riesenfeld* 
Los Alamos Scientific Laboratory 

Abstract 

The transport of energy by hydromagnetic waves is calculated, with view 
toward application to the heating process of the Los Ala.mos rotating plasma 
mirror device. 

An understanding of the mechanism of conversion of ordered drift motion 
energy into random thermal energy is of great interest in analyzing the 1 behavior of devices like Ixion, the rotating plasma machine at Los Alamos. 
Here magnetic probe studies of the diamagnetic response seem to show that 
the original azimuthal drift mode of motion is transformed into a state which 
consists of a shell of thermal. or turbulent motion located roughly halfway 
between the centerline and the outer electrode. The entire sequence of 
events occupies a relatively long time (of the order of a hundred microseconds) 
and the relative drift velocity of ions and electrons in the initial state is 
small. A plausible agency for effecting the energy transfer would be hydro-
magnetic waves, experimentally known to be excited in similar geometries. 
Mechanisms for the resonant damping of such waves, such as T. Stix's ion 
cyclotron heating process,2 are likewise known and might account for the 
appearance of the observed final state. 

As a first step in determining whether such a picture makes sense, the 
generation, structure, and energy transport of the appropriate hydromagnetic 
modes was examined. Using reasonable boundary conditions, one can then 
obtain cylindrical standing waves corresponding to the Ixion geometry, with 
fairly well defined shells of high energy density. To avoid complication, 
the motion of the plasma associated with the wave was treated by means of 
linearized Boltzmann equations, leading to the hydrodynamic approximation 
plus an equation of state, and the conductivity and viscosity of the fluid 

* Work performed under the auspices of the U. s. Atomic Energy Commission. 
l. K. Boyer et al, Proceedings of the Second United Nations International 

Conference on the Peaceful Uses of Atomic Energy, p/2383, 319 (1959). 

2. T. H. Stix, Proceedings of the Second United Nations International 
Conference on the Peaceful Uses of Atomic Energy, p/361, 125 (1959). 
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were taken as empirical parameters. Dispersion relations for the three 
principal modes of propagation were obtained as well as their detailed 
polarization structure, and energy density distributions were calculated. 
The energy distributions for standing waves (corresponding to the modes 
commonly referred to as = 2, 3 ma.gnetoacoustic modes) were found to be 
based on expressions in agreement with independent Russian results (see 
for example the work of Akhiezer and Sitenko3). The detailed results on 
the cyclotron heating rates in cylindrical shells and a comparison with 
experimental data will be presented in a subsequent paper. 

3. A. J. Akhiezer and A. G. Sitenko, JETP 35, 116 (1958). 
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PAPER 8 

WAVES IN A PLASMA* 

W. P. Allis 

Department of Physics and Research Laboratory of Electronics 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

Many papers that consider the effects of terminal 

motions, finite Larmor radius, collisions, and so forth 

on the propagation of plane waves through a plasma in the 
1--4 presence of a magnetic field have recently appeared. 

The necessary mathematics obscures the origin of many of 

the predicted phenomena, and as these also depend critically 

on the range of frequency, plasma density, and the magnetic 

field that is considered, it has seemed worth while to view 

the complete range of these last three variables in the 

simple limit in which there are: (a) no density gradients; 

(b) no collisions; and (c) no thermal motions. The thermal 

motions affect mainly the slow waves whose phase velocity 

is comparable to the thermal motions. For this reason, 

among others, we shall be particularly interested to note 

the conditions under which slow waves exist. 

* This work was supported in part by the Atomic Energy 
Commission; and in part by the U.S. Army (Signal Corps), the 
U.S. Air Force (Office of Scientific Research, Air Research 
and Development Command), and the U.S. Navy (Office of Naval 
Research). 
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Under these restrictions, the mobility of an electron 

or ion in a magnetic field is a tensor quantity5 that is 

particularly simple when it is expressed in components of 

the electric field which are either parallel (µP) or 

rotating about the magnetic field in a right-handed (µr) 

or left-handed direction. In terms of the mobility 

tensor, we obtain the plasma conductivity, 

(1) 

by summing over the species of charged particles, and hence 

the effective dielectric coefficient 

KT JKH 

K - -jKH 1 + 
o 

( 2) 

KP 

w.here 

2KT Kr+ 
(3) 

2KH = K -r 

The tensor (Eq. 2) is written in Cartesian, nonrotating 

coordinates. KP and are the components parallel and 

transverse to the magnetic field, and KH is the component 

that gives the Hall effect. The last two components are 

given in terms of the rotating components by Eqs. 3. 

For the particular case of a collisionless, cold, three-

component (ions, electrons, and neutral molecules} gas the 

components of the dielectric tensor are 

KP l - 2 

Kr - 1 - a 2/(l + (1 - _} (4) 

K 1 - a 2 /(1 - (1 + 
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They are expressed simply in terms of the ratios 

(5) 

eB 
= = m 

where a 2 is a measure of the plasma density n, of the 

applied magnetic field B, and a, all vary inversely 

with the circular frequency of the electric field. 

We now study plane waves by assuming that all quantities 

are proportional to 

exp ( t - c ) (6) 

where is a vector normal to the wave whose magnitude n is 

the index of refraction for this direction of propagation. 

There should be no confusion in the use of the same letter 

in formula 5 because the plasma density will only appear 

implicitly in the symbol a. The phase velocity is 

...... en ( ) u 7 
n 

Substituting expression 6 in Maxwell's equations, we 

obtain 

x x + . = o (8) 

This equation, among others, has been considered by Astrom. 6 

To obtain solutions, the determinant of its coefficients 

must vanish, and this gives the dispersion equation for the 

index of refraction n. This equation would, in general, 

be bi-cubic but, because the temperature has been neglected, 

the sixth degree terms cancel and we have the bi-quadratic 

equation 
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An - Bn 2 + C = ( 9) 

with 

A = sin2 + KP cos2 

B KrKJ sin2 + + cos 2 

whose discriminant is 

Here is the angle between the wave normal and the applied 

magnetic field B. 

Because collisions have been neglected, the discrimi-

nant D2 is always positive. Therefore n2 is always real, 

and n either real or pure imaginary. This sharp distinction 

between conditions of propagation or attenuation exists in 

virtue of assumptions (a}, (b), and (c). 

The solutions of Eq. 9 are the indices of refraction 

- + D)l/2 
n - 2A (11) 

associated with the polarizations, but it is easier to 

understand the solutions of Eq. 9 if it is solved for the 

direction of propagation, in terms of the index n: 

tan2 = 
KP (n 2 

- Kr) ( n 
2 

- K 

(n2 - -
(12) 

form it is clear that for propagation along the 

field there are two waves 

n
2 = 
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that may be either propagated or attenuated according to 

the signs of Kr and and the subscripts on the dielectric 

components indicate that they are right and left circularly 

polarized. 

Similarly, for propagation at right angles across the 

magnetic field (G there are two waves 

( 14) 

of which the first is polarized with the electric field 

parallel to the applied magnetic field. We shall call this 

wave 11 ordinary 11 because it is not affected by the magnetic 

field. The second wave, which we shall call "extraordinary," 

is transverse to the magnetic field but not transverse to 

the direction of propagation. It is made up of electric 

vectors rotating right- and left-handed around B, describing 

an ellipse in a plane perpendicular to B which contains 

the direction of propagation. Thus 

The extraordinary velocity is intermediate between the 

right- and left-handed velocities. 

For intermediate directions (o the index 

is intermediate between the "principal indexes" given by 

Eqs. 13 and 14. If we make a polar plot of the phase 

velocity we obtain two surfaces, called "normal wave 

surfaces," like those shown in Figs. 1, 2, Since D 

is never zero, the two wave surfaces do not intersect. 

In crystal optics the term "ordinary" is used for 

waves that obey Snell's law, that is, those for which the 

wave surface is spherical. In our case neither surface is 
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Fig. 1. Wave Normal of a Plasma in a Magnetic Field 
(Effect of Electrons Only). 
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spherical except in limiting situations. The term "ordinary" 

does not apply to either complete wave surface; we use it 

in a different sense, and only for propagation normal to 

the magnetic field. (This is also Russian, but not Swedish, 

usage.) If we want a term .for characterizing an entire,wave 

surface, we should use "right-handed" and "left-handed, 11 

because this characterizes the direction of rotation of E 

around B for the entire surface. We must be cautious here, 

too, because the wave that we call "right-handed," rotates 

left-handed about the direction of propagation when it propa-

gates along -B. A more satisfactory notation f'or an entire 

wave surface would be to denote it (rx), (x), and 

so forth. 

We now wish to investigate the matter of which values 

of the parameters and give propagation (n2 > o), 
and which give attenuation (n2 < o). The boundaries of 

these regions are obviously the lines along which n2 

u = which we call "resonances," and those along which 

n2 = u which we call "cutoffs."

The principal resonances are given by 

K 1, Electron cyclotron resonance (16) r 

= 1, Ion cyclotron resonance 

a.2 
( 1 - (1 -

= ' 
1 - + -

Plasma resonance 

The first two justify our definition of "resonance." The 

third is an extension of the conventional use of "plasma 

resonance" which applies when there is a magnetic field, 

but note that "plasma resonance" does not occur at the 
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frequency" For high frequencies << 1) plasma 

occurs at 

+ 
p D- (18a) 

represented on a plot against (Pig. 1) by a 

straight line. In general, it is represented by 

hyperbola 

branch of which goes through the points 

) and the other branch through p D-

2 and This last 

which occurs large plasma densities 

m) c 2 B H), is sometimes called the "hybrid 

its relation to the cyclotron fre-

is accidental. At large plasma densities the elec-

and ions must move together in the direction of the 

normal, otherwise charge separation would occur, but 

is prevented by Coulomb forces; however, they may 

parallel to the wave surface. At the particular fre-

the equations of motion7 show that the 

and ion displacements in the directlon of E are 

( 19) 

angles to E the electrons have large dis-

The resonance occurs because Coulomb and elec-

forces independently make the electrons and 

together along E. 

There la no resonance for the ordinary wave but there 

resonances along directions other than the principal 
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directions. These are found by setting n in Eq. 12: 

tan2 -K /KT (20) res p 

and occur whenever KP and KT have different signs. For.a 

plasma these directions occur on a cone whose axis is 

along B and whose angle depends on the frequency. In 

directions near the resonant cone the phase velocity 

slow and hence Cerenkov radiation is possible. Any electron 

in the plasma can have a "bow wave" which will be near the 

resonant cone (Fig. 4). 
The resonant directions are also the directions in 

which plasma oscillations may occur, since it can be seen 

from Astrom•s expressions for the components of the electric 

vector that this vector becomes normal to the wave surface 

at any resonance. 

The principal cutoffs are given by 

K p 

4 a = 

2 a = l, 

Cyclotron cutoffs 

Plasma cutoff 

( 21) 

( 22) 

The two cyclotron cutoffs form a continuous curve 

which ls a parabola on the - a 2 plot. The ordinary wave 

cuts off at the plasma frequency. There is no cutoff for 

the extraordinary wave. Neither are there cutoffs in other 

than the principal directions, because setting n2 in 

Eq. 12 yields tan2 = -1. 

We are now ready to make a map of all possible wave 

surfaces by plotting against a 2 for all the principal 

resonances (Eqs. 16, 17, and 18) and cutoffs (Eqs. 21 and 

22). Increasing the magnetic f'ield would produce upward 

motion; increasing the plasma density would produce motion 
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to the right; and decreasing the frequency for a given 

plasma and field would produce radial motion from the origin. 

Figure l shows only the high-frequency range 1), in 

which only the electrons can follow the oscillations. As 

a resonance or cutoff line is crossed, one or two of the 

waves in the principal directions disappears, or reappears, 

and hence the shape of the wave surface changes radically. 

Within each of the eight areas in which the plane is divided 

we have plotted the corresponding normal wave surface with 

the direction of B parallel to the calculated for 

some specific point in the area. The free-space light 

velocity is given by the dotted circles as a reference. 

There is one area in which there is no wave surface, as all 

waves are attenuated in this area. In the remaining seven 

areas there is propagation in some directions, but in only 

two of them do the two waves exist for all directions. Thus 

a plasma is largely opaque or largely transparent according 

to the way in which you look at it. Three of the areas have 

figure-eight, or figure-infinity, wave surfaces. These are 

the areas where is negative and there is a resonant 

cone. The two points at 1) and (a = = 1) 

are extremely singular because both resonance and cutoff 

lines intersect there. Only the presence of a magnetic 

field removes the confusion about awhether the plasma fre-

quency is a resonance or a cutoff. The ordinary cutoff 

line at a = 1 is itself quite singular because on the low-

densi ty side of this cutoff the left-handed and ordinary 

waves are on the same wave surface, but on the high-density 

side it is the extraordinary wave that connects with the 

left-handed one. The transition is shown in Fig. 2, in 

which four wave surfaces close to the plasma frequency are 
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shown. At the plasma frequency the wave surfaces consist 

of a sphere close to the velocity of light 

1 -
2 - 1 + 

{23a) 

but the polar points on this sphere are missing. They are 

replaced by two external points 

(23b) 

and two internal points {if they are real) 

(23c) 

the left of a 2 = 1 the sphere has dimples that connect 

the internal points (or the origin). On the right 

has projections that connect with 

external points. 

As we approach the line a = 1 from the right above 

lotron resonance, or from the left below cyclotron 

, the resonance cone becomes very narrow. Thus 

= 1 is not a resonance, it ls always very close 

a resonance for propagation very nearly along B. 

The entire range of frequencies is shown in Fig. 

logarithmic scales have had to be used and this obscures 

simple shape of the resonance and cutoff lines. Even 

a small mass ratio of 4 had to be chosen so that the 

areas near ion cyclotron resonance would remain 

There are now 13 areas with 12 distinct wave surfaces. 

In the limit of low· frequencies the figure-eight in 

upper right-hand corner becomes two spheres tangent at 

origin, and the elliptical figure becomes a sphere 

externally to the two previous spheres. This 
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sphere obeys Snell's law and is called the "ordinary wave" 

by Astrom. We denote it (rx), and we have 

1 _ 1 + n(M+m) (24a) 
urx c 

where (B is the Alfven velocity. The other, 

termed "extraordinary wave" by Astrom, is given by 

u 2 u 2 cos2 
rx (24b) 

In regions where n2 is negative the exponential (B) 

may be written 

where is the free-space wavelength and is 

the attenuation per free-space wavelength. This attenuation 

is nowhere shown on our diagrams, but it is evident that 

n rises linearly beyond any cutoff and jumps from zero to 

infinity at any resonance (Fig. 5). Because we have removed 

all absorption mechanisms from our theory, a semi-infinite 

plasma will be perfectly transparent when n 2 and perfectly 

reflecting when n2 A slab of plasma whose thickness 

is a finite number of free-space wavelengths will still be 

perfectly reflecting near a resonance, but near a cutoof 

considerable.radiation may be transmitted. 
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OSCILLATIONS OF A FINITE COLD PLASMA 

IN A STRONG MAGNETIC FIELD 

Carl Oberman and John Dawson 
Project Matterhorn, Princeton University 

Most treatments of plasma oscillations have been 
given for plasmas of infinite extent. Such treatments 
give information on the propagation of electromagnetic 
waves inside a plasma, but give no indication of the cou-
pling between these waves and the electromagnetic fields 
outside the plasma. This coupling determines the radia-
tion from, say plasma oscillations, as well as the response 
of the plasma to externally applied fields, where the fields 
may be either wave fields or near fields produced by cur -
rents and charges near the plasma surface. Since the 
electromagnetic field affords one of the inost fruitful means 
for investigating the behavior of plasmas, it is important 
to know the size and effects of this coupling. 

PAPER 9 

We have considered the oscillations of a bounded plasma situated 
in a strong magnetic field. In order to facilitate the treatment of the 
problem, we make the following assumptions: 

a) The magnetic field is of such strength that motions perpendic -
ular to it are negligible; 

b) Thermal motions of the electrons are negligible; 

c) The electrons behave like a charged continuous fluid; 

d) The ions constitute a uniform, fixed neutralizing background; 

e) The amplitude of oscillations is so small that the linearized 
equations of motion are applicable; 

f) The mass motion of the electrons in the unperturbed plasma 
vanishes. 

If the constraining magnetic field is taken in the z-direction, the 
linearized equations of motion for the perturbation quantities inside the 
plasma are shown in Slide 1. The plasma geometries we have considered 
are the infinite slab and cylinder with the constraining field parallel 
to the surface. 
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As for boundary conditions at the plasma surface, the large zero 
magnetic field constrains electrons to move parallel to the surface 

hence no surface charge can accumulate and hence all components of 
are continuous across the surface. Since the plasma density is every-

finite, there are no sheet currents at the plasma surface. Thus 
components of B are continuous. 

aN + n avz = 
at az 

vx 41Ten v 
c at z c z 

1 
Vx E =---

c at 

=-41TeN, 

v. 

Slide 1. 

In order to completely specify the problem, boundary conditions 
distances must ·be given for the fields such as periodic or 

ones (which conserve energy). However, in the treatment of 
of the radiation due to plasma oscillation it is convenient 

abandon these energy conserving boundary conditions at large dis-
s and admit the presence of perfectly absorbing boundaries. 

Before proceeding on to special problems, it is worthwhile to 
an orthogonality relation satisfied by the normal modes. It is not 

sary to know the complete structure of these modes but only that 
quantities are of the form A(x, y, z, t) = A(x, y) expi(wt+kzz). 

It is easy to show from the basic set of equations that all field 
s are determined when E is determined. If E 1 (x, y) and 

(x, y) are two normal modes the system (with the same and 
and w2 are the corresponding normal frequencies, then we tind 

relation shown in Slide 2. 

Slide 2. 
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Here and are the exterior and interior to the 
plasma in a constant z plane and is the square of the plasma 
frequency. This equation can alternatively be written as shown in Slide 3 
which exhibits explicitly the particle contribution to the modes. These 
modes can be normalized so that the term in brackets is 1 if the 
modes ar.e discrete or {1-2) if they are members of the continuum. 

+ k2 + k 2 = w2/c2 
x y 

= (1 - /w2) -

= 

Slide 3. 

If we continue the Fourier decomposition of the modes in x and 
y say for the slab situation, we find the following dispersion relation 
relating the wave numbers inside and outside the plasma to the frequency. 

Because of the symmetry of the situation, the modes fall into 
either even or odd forms in x and their general character is exh_ibited 
in Slide 4. Case A is the situation obtained when > {k1x)2> 
and represents waves propagating in the x-direction both inside and 
outside the plasma. This is a situation arrived at when the frequency 
w 2 > 02, and where the phase velocity along the surface exceeds the 
velocity of light c. {For ease of presentation, we take ky= 0 unless 
otherwise indicated.) 

--t ...... --Ez-
Wz>!L2 

CASE A CASE B CASE C CASE D 

SLIDE 4 

. 2 2 
Case B where k 1x > 0, k 0 x < 0 are the modes which propa-

gate in the x-direction inside the plasma, but not outside. These are 
waves trapped in the plasma. This situation obtains when Wf. < nZ and 
the phase velocity along the surface is less than c. In this case, a 
period equation shown in Slide 5 must be satisfied in virtue of the bounq-
ary conditions at the plasma surface and this in turn restricts kx 0 , kx1 

and W to discrete values for a given k , kz • ¥i this slide the period 
equation is given as well as the values o~ k 0 x , klx , w for kz given for 
frequencies near the plasma frequency. 
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If we refer to Slide 4, we see Case C which propagates on the out-
. side but not on the inside. These are waves excluded from the plasma. 

.. Modes of type D are not allowed in the present problem because 
' of the break in the derivative. Conditions other than those here realized 
(surface charge) can give rise to modes of this type. 

I would like now to touch briefly on several problems which can 
b~ treated using the previous normal mode analysis. 

For Case B. 

{ tan} (kio) = jkol/ki {even} 
-cot x x x odd 

Ifµ = 0, w2 ""' n2 then with E: = n - w 
we find 

~2 = (rt2 /c2 - k~ + 2n £. /c2 

142 = 2(£/rl) <le!- n2 /c2) 

Then £/rt°' 

Slide 5. 

The first one that I shall just mention is the scattering of a plane 
.. . . wave by a plasma cylinder, The previous normal mode analysis for 
(slab situation was repeated for the cylindrical situation with essentially 
~it;nilar results. These modes were superposed so as to add up in the 
~~~al way to an incoming plane wave of unit amplitude plus an outgoing 
P Mndrical wave. The amplitudes and phase shifts of the partial waves 

e derived as well as the differential and total cross section. These 
. '¢ .!lu1ts are of course functions of the plasma frequency and radius of the 
ylilider and may be of use in plasma diagnostics. 

· . A second similar problem is that of reflection and transmission 
,f ra_diation for a plasma slab. That is, we consider the problem of a 
lane, wave with certain wave vector incident upon the slab and investigate 
he amplitudes of the transmitted and reflected waves, Again supposing 

e normal modes so as to yield only an outgoing wave on the side op-
~fe to incidence, gives the reflected and transmitted amplitudes, and 
IS intensities. Slide 6 shows the transmission coefficients (ky = 0) 

. <. §ases A and C, with their dependence on the frequency, plasma 
equency, and thickness. The usual interference properties of thin 
lchsar~ here realized. (For instance, there is total transmission when-

,\10 = nw/2.) 

·••· .•.. Another interesting problem which we considered was the formula-
. ",,,,,,, on of the response of the plasma to any arbitrary distribution of sources 
:},>?;~~planes on either side of plasma slab. We carried out in detail the 

51 



Case A. 

Case C. 

Slide 6. 

r 2L , 

-----------

\ ___ ____._. SLOPE= ± ~ __ ___,/ 

Ex AT CENTER = 471"0-o LW 
8.a 

SLIDE 7 

problem of oppositely charge finite condenser plates placed close to the 
plasma surface driven at a frequency W < < ,Q • Slide 7 shows schemat-
ically the geometry and standing wave pattern of the steady state behavior 
of the field which has strong maxima along the dotted lines. Th~ shaded 
area shows the region of penetration of the vacuum field 411" (J elWt. The 
possibility of getting strong low frequency fields into the plas~a is an 
interesting one. Slide 8 shows a plot of EX. at z = 0 as a function of x 
for various values of J. , where l = LW/ o fl . 

The last problem I wish to discuss is the radiation emitted by 
plasma oscillations of the slab. There are several approaches to the 
problem. We have formulated the initial value problem for the plasma 
in terms of normal modes so that we can pluck the plasma and watch the 
development of the radiation field in time. We have also formulated the 
problem of the response of the plasma in the presence of externally driven 
currents and charges and mechanical forces. Again, under these circum-
stances we can sit back and watch the evolution and steady state behavior 
of the field. A third method which yields results in close accord with the 
other two is to merely alter the boundary condition at large distance so 
as to absorb all incident radiation. 

The analysis now is formally similar to the other normal mode 
cases except now W is complex with positive imaginary part to conform 

52 



0.3 .....----.,..-\----..,/.----.---~--...,-----. 

0.2 

0.1 

\ I \ 
I \ t-05 \ y .x- . "\ 1 =0.1 

/\ \ 
I \ \ 

,,,/ \ \ 
...,,. \\ \ 

' .I = 1.0---"'"\ \ 
\\ \ 
\\ \ 

\\ \ 

x wz 
Ex vs 8 or SlS 

SLIDE ~. 

\ 
\ 

{ tan} (trio) = iko ki {even} 
-cot ""X x x odd 

Let w = n + E: 

{
(n + 1/2)2

} "IT
2 

2 2 • {even} 
then E /n = n2 2(k2 02 + l)2 (k o - 1 + 21ko) odd 

Also 

n2 € 
k 0 =k+- -

x kc2 n· 

Slide 9. 

absorbing boundary condition. This in turn demands kx0 and 
to be complex, and the real parts of kx0 and W must have the 

sign (for x> O) so as to yield only outgoing radiation. Slide 9 shows 
period equation demanded by boundary conditions at the plasma sur-

For the case ky = 0 and w close to Q, we show the characteristic 
and wave numbers and the explicit exponentiation in space and 

Slide 10 shows the form of these modes. 
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f x 
___ __,,,_,_..,.._Ex - w 2 > ri.2-

SLIDE 10 

We are currently extending these investigations to include (a) the 
effects of a finite rather than infinite equilibrium magnetic field, (b) the 
ion dynamics, and (c) the effects of temperature. 
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SOME ADDITIONAL RESULTS ON WAVES IN A 

PLASMA IN A MAGNETIC FIELD 

Ira B. Bernstein 
Project Matterhorn, Princeton University, Princeton, N. J. 

The general dispersion relation has been computed which 
characterizes the small motions about a static equilibrium in a 

PAPER 10 

external magnetic field of a fully ionized, relativistic plasma. 
It is assumed that collisions are negligible. Among the various 
results obtained are information on certain beam instabilities, hydro-

instabilities associated with anisotropies of the equilibrium 
function, and the propagation of electromagnetic waves. 

Of particular interest are the results on the propagation of 
s in directions skew to a strong equilibrium magnetic field. When 

velocity distribution of the electrons is that corresponding to ther-
mal equilibrium, such waves whose frequencies are harmonics of the 

frequency are little damped. Application of Kirchoff's law then 
s that the synchrotron radiation should be correspondingly small. 

is in agreement with the results of Rosenbluth. 

This work is being written up for pubiication. 
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C. THEORIES PERTINENT TO SPECIFIC EXPERIMENTS 
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THE INTEGRAL INVARIANT FOR ADIABATIC PARTICLE MOTION 

T. G. Northrop and E. Teller 
University of California, Lawrence Radiation Laboratory 

Abstract 

usual first-order particle drifts conserve the integral invariant, 

A proof will be outlined and applications to particle motions 

•· netic fields will be given. Further details may be found in UCRL-5615, 
of the Adiabatic Motion of Charged Particles in the Earth's Field," 

Northrop and E. Teller. A paper bas also been submitted to the 
REVIEW. 

59 



CRITICAL CURRENT FOR BURNOUT IN AN 
OGRA-'l'YPE DEVICE 

Albert Simon 
Oak Ridge National Laboratory 

Abstract 

A complete algebraic analysis has been obtained for the 
variation of the steady state iQn density ll..t- with injected current 
I in an OGRA-type fusion device (i.e., a device based on trapping 
of ions by breakup of energetic molecular ions on collision with 
either the backgrowid gas or trapped ions). The most general varia-
tion of n+ with I is sho"Wn to be an s-curve with at most three roots 
of n+ for a given input I. A physical interpretation of these three 
roots is given. In addition algebraic expressions are obtained for 
the two currents at which the bends in the s-curve occur. It will 
be necessary to attain the larger current in order to build up a 
high density plasma when the density is being increased from below.• 
On the other hand, once the high density has been achieved it may· 
be maintained by steady injection of a current larger than the 
lower value. 

In two previous publications, l-2 an expression was derived for 'the 
critical current at 'Which formation of a plasma by high-energy injection will 
begin. This previous expression was a case in which the trapping mechanism 
(although not specified in detail) was localized and did not depend on either 
the neutral gas in the device, the trapped ion density or the dimensions of 

3 the system. A trapping mechanism of this sort is provided bJ the arc in DCX. 

The situation is quite different in a proposed fusion device such as 
OGRA.4 Here the injected molecular ions have a long mean-free-path L before 
they strike the injector snout and trapping occurs by virtue of the 
of the molecule on collision with either the background gas (cross section 
the trapped ions (613+), or other molecular ions in transit (6B2+). 
one might suspect on physical grounds that a critical current also exists in 
this case and indeed such an expression has been found. The result is 
more complex than in the case of DCX because of a feedback which is inherent 
the gas-breakup scheme. The onset of neutral burnout results in a reduction 

1. A. Simon, The Phys. of Fluids, 1, 495 (1958). 
2. A. Simon, '!he Phys • Of Fluids, (in press ) • 
3. C. F. Barnett et al.;-Proc. Second Geneva Conf. 31, 298 (1958). 
4. I. V. Kurchatov, i!..· Nuc .• Energy 8, 168 (1953'). 
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neutral breakup centers as well as an increase of the ion breakup centers 
hence has a back effect on the input trapped current. 

algebraic a.na.J.ysis of the steady state equations has been 
case when one can neglect the contribution of the molecular 

to bUrn.out or to breakup of other molecules as compared to the effect of 
trapped ions and the neutral gas. (Tb.is i?S a highly valid approximation in 

all cases of interest.) The total mean free path A. of the injected 
ions is then: 

I\ 

1 1 I\ 0 + 
-=-+Na: +n+cr.B A. L o B (1) 

N0 is the average neutral density external to the plasma region and n+ is 
trapped energetic ion density. (It has been assumed that the slow ions re-

from ionization Qf the neutrals in the plasma region contribute equal1y 
breakup as do the neutrals themselves. The sum. of the slow ion and neutral 

in the plasma interior should remain equal to the external neutral 
even after burnout.) The probability that a molecule will break up 

a path length x is then 

p(x) -x/li. dx 
e ).B (2) 

(;) 

trapping is found by integrating Eq. (2) over all space. 

% B.U. (4) 

This leads to the following steady s-tate equation for the ion density: 

I\ (~) 
N 

0 

+ (i) 1 

I 

/\ 
Nna" v 

2 o +ex 
-~_...;......;;;;:~- + n <S vP 

Iv + + c 
1 + - n cS'. 

V
0 

+ d 

+ N 
0 

+ n+°d. vV 

(1·+iv n er+) 
v0 + d 
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Here I is the injected (number) current of molecular ions, V the plasma volume, 
1 the mean chord length of the plasma volume, v the energetic ion velocity and 
v0 the neutral atom velocity. The charge exchange cross section is denoted by 
oC.io the sum of the charge exchange and ionization cross sections is denoted py 
0-d + ( O"d + = I.Ti + <1'cx), and <Jc is the "effective 90° coulomb scattering cross 
section." Finally, the pumping sJ>eed of the system is denoted by" B, N0 is the 
initial neutral density before the beam is turned on, f' is. the fraction of input 
molecular ions which come back as neutrals <r ~ 2). <Sis the fraction of slow 
ions which do not retuni to the system as neutrals after striking the walls and 
P is the usual mirror loss probability. 

Equations (5) and (6) combined constitute an implicit equation in the 
variables n+ and I. Thus we have 

f(n ,I) = 0 
+ (7) 

It can be shown that I is uniquely determined by a choice of n+' and conversely 
that there are either three or one real positive values of n+ for any given I. 
As a result, the variation of n+ with I has the general form show.a in Fig. 1,5 
whereas the corresponding curve for DCX has the form shown in Fig. 2. 

The multiple roots occurring in Fig. J. have a straightforward physical 
interpretation. In region 1 neutral burnout has set in. The steady state 
solution is achieved by balance between charge exchange loss of the trapped 
ions and feed by breakup of the molecular ions on the neutral background 
loss is negligible). The second solution in region 2 corresponds to the point 
at which the ion density has risen and the neutral density has fallen such that 
the breakup on the ions now is the same as the previous breakup on the neutral 
gas. The charge exchange loss remains the same since it is proportional to the 
product lloil+ (where no is the average neutral density in the plasma region) and 
since, after burnout, Do tv l/n+· The final root of region 3 corresponds to 
the point at which mirror loss becomes more important than charge exchange 
It is clear that roots l and 3 a.re stable while root 2 will be unstable. 

An implicit equation for the upper critical current (u.c.c. in Fig. 
been found and is as follows: 

where 

I u.c.c. 
(~I+ N

0
)CJcxvv(i_.::£:) [1 +l\ oB01 + (Y)crB+1] 

K [A d'B 
0
1 + ( ¢ ~ ~ d'B + L] 

] 

1/2 

c;rd + vV 

(- 0 1 6 + K= -+-V vcr v B d 
0 

5. A recent paper by I. N. Golovin (Harwell, April 1959, unpublished) states 
that Kuznetsov and coworkers have obtained numerical results indicating a 
behavior of this sort. 
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L .C.C. u.c.c. 

Fig. 1. Variation of Steady State Ion Density with Injected 
Current for an OGRA-Type Device . 

C.C. 

Fig. 2. Variation of Steady State Ion Density with Injected 
Current for a DCX -Type Device. 
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The corresponding plasma density is (~ - l)/K. This equation for Iu.c.c. can be 
solved quite readily by numerical means. It will be necessary to inject this 
u.c.c. in order to attain a high plasma density when the density is being in-
creased from below. 

In some cases there will not be a solution of the above equations, which 
that burnout is not possible. The condition for which burnout is impossible·is 
that 

r cr-cx --7 + -
0-d 

1$ + el 
Vv 

0 

Tb.e approximations which are involved in the derivation of Eqs. (8) through 
(12) will break down if the resulting value of ¢ [as defined in Eq. (9)] is not 
larger than unity. In this case, no simple expression equivalent to Eq. (8) has 
been found and we must deal with the general solutions of Eq. (5). Numerical 
studies have so far indicated that the characteristic curve is still s-shaped 
this region although it is much steeper and seems to be tending toward a DCX-
shape. 

A simple expression has also been derived for the lower critical current 
(L.c.c. in Fig. 1). This is 

where 

I L.c.c. 
( r_e I + N ) 0- vV 

N o ex 
----K [1--):::c----:'(=l ----= _ _!,-...-)] 

2~ O'"B +L K 

0 ={[1 _ (r I + N J crcx v J _1 }
112 

V e o K )<1vP c 
(14) 

The corresponding plasm.a density is given by &. Once a high plasm.a density has 
been obtained, it may be maintained by steady injection of a current larger 
the L.C.C. 

Details of these algebraic calculations and a sUilllllary of numerical results 
will be given in a f.'uture publication. I am greatly indebted to Drs. R. c. Gilbe 
and R. E. Hester for calling my attention to the possibility of multiple roots 
in the gas breakup case. 
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AffiOLUTE CONTAINMENT OF CHABGED PARTICLES 
IN A MAGNETIC FIELD 

J. Bo TSJ'lor 
Atomic Weapons Research Establishment, 

Aldermaston, :Berks., England. 

Abstract. 

PAPER 13 

In a magnetic field of the "mirror" type certain particles 
are "absolutely" contained irrespective of the constancy or 
otherwise of the magnetic moment. A criterion for absolute 
containment is derived and shown to ressemble that ror contain-
ment on the adiabatic approximation. 

';introduction.. 

'L The ergwnent for containment of a particle in a magnetic mirror, in 
!~the absence of collisions, is nonnally based on the adiabatic invariance 
YpJ the magnetic moment. This is not a true constant of the motion, and 
'f\ofe expect arguments based on an adiabatic invariant to be valid only if 
~"'.~he Larmor radius were very small compared to the dimensions of the field. 
'ciJ:!here are 1 however, machines such as D.c.x. where this is certainly not 
~!true. 

~,,_ In this note, therefore, another principle of conf'inement is discussed 
~:~al.led absolute containment, (1) which only depends on real constants of 
~:~e DX>tion. This principle is more restrictive than the adiabatic one but 
~jis .. complementary to it in that it applies when the Le.nnor radius is 
~g6mparable to the field dimensions~ 
?£.-·•:;; 

The condition for containment on the adiabatic approximation is 

, W is the total energy am w1 the component perpendicular to the f'ield 
';·, the point where this has the vaiue Bo~ 

The existence of' absolutely contained orbits has been noted by several 
workers notably at Livennore and Oak Ridgeo 
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Absolute Containment 

The motion of a charged particle in an axially symmetric field is 
governed by the Hamiltonian 

where Pr = mr, Pz = inZ, Pe = mr2 ~ + ~ r A and A is the e component of 
the vector potential. It is convenient to introduce instead of A a. "'"'''""'"'"' 
function 

then 

t=!:rA c 

..::. B = .!. c z r 

so that t is a constant along a line of force. 

To avoid contusion we shall consider a positive charged particle 
moving in a field such that B is also positive• Then t ;;. 0 and. z 

and 

2 "e+ L ( ) Pe = m r t = + t say • 

The particle is certainly restricted to that region in which the 
kinetic energy is positive i.e. to the region for which 

1 I L + t - t I < e2" r 
0 0 

( 1) 

where e = 2mH and the subscript zero denotes initial values. We can 
therefore say, without invoking any approx:Unations, that the particle is 
absolutely contained if Etj• 1 defines a closed region in the r, z plane. 

There are several ways in which one can decide whether this r..riL•~r.1.uu 

is satisfied but a useful one is the following graphical procedure. For 
any plane Z"llZi we draw t(r,zi) against r, and on the same diagram draw 
region defined by Eq. 1. This region is bounded by straight lines and 
distinct cases arise. If {L0 + t 0 ) > 0 then the region is as shown in 
Fig. 1, while if (L0 + t 0 ) < 0 it is as shown in Fig. 2. From this Drnrom•··•''' 
one can immediately see what values of 'r' are permitted at any plane 
z=z. [e.g. in Fig. 1 the particle can range from rA to rB]., Thus v.oe can 
con~truct the allowed regions in the r,z plane. It" will be seen from 
Fig. 1 that if 1 0 + t 0 > 0 then for every plane z=zi there will be some 

• There is actually no loss of generality in this. 
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~ · 

1 

3 
. '·.::::;:,·;:::)?(::·: .. 

::· :->.::.: .. · ... :<::.:::-

'1.f'c:/Wed values of r, and the particle can always 
ohdition for absolute containment is 

L + t < O. 
0 0 

2 

i~ 
I 

escape. Hence the first 

J cally this oondition means 
f . symmetry. 

that 1he particle orbit encircles the axis 
,:;:::'; .' .. '.:: .:: 

?'. iiiion the other hand if L0 + t 0 < 0 as in Fig., 2 then it may be that for 
~~ val~,::s of zi (as e.g. Zmin figure) there are no allowed values of r. 
>~his case the allowed region in the (r,z) plane is closed as in Fig. 4. 
· · .'the particle is absolutely contained. The criterion far the particle 
·. be unable to cross the plane z=zi is that the curves 

·::. 

.; =~?/~ 
'··~>'.· .. 

intersect. 

1 
t • t(r,z.) and t = L + t 

1 0 0 
+ ~~ r 

,: < This condition can be expressed, approximately, in a form similar to 
,. ~/ Obtained on the adiabatic approrlmation. 

~uppose that 1he field has the usual 'mirror' shape, that the plane in 
ch Bz reaohe s a maximun is z=Zm and. that on this plane Bz can be regarded 
.ocmatant and equal to Bm• Then at the plane of 1:he mirror 

t{r,z) • e B r 2 
2Q m 
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Similarly if z is the plane of injection 
0 

t -0 
e 2 - B r. 2o o 

If we define the transverse kinetic energy with which the particle 
was injected• as 

then the criterion for absolute containnent can be written in the form 

!!.._ 4{y - 1} Bm 
W < 2 B 1 y 0 

where y is defined as -Lo I fo • 

Comparing this with the result obtained on the adiabatic 
it will be seen that it is a more stringent condition since the 

4(y - 1} 
2 

y 

is always less than unity &Di attains this value only for y = 2o 

(~) 

The condition y = 2 corresponds to the case of a particle injected 
such a way that the radius of injection is equal to its Larmor radius. 

Conclusions 

In a magnetic field certain particles are absolutely contained 
whether or not their magnetic moment can be regarded as constant. The 
orbits of these particles encircle the magnetic axis and satisfy a 
condition such as (2) which is generally more stringent than that deduced 
on the adiabatic approximation but reduces to it for particles which are 
injected so as to encircle the axis symmetrically. 

The conditions we have found are sufficient to establish contai:anent, 
it is interesting to speculate whether they are also necessary, in other 
words whether aJ.l particles which do 1E! satisfy (1) actually escape. The 
Ergodic hypothesis would lead us to suppose that they would. However, 
unless we can estimate the t:ime it takes for the particles to escape, this 
point is of only academic interest. 

In most mirror machines the La.rnK>r radius is small compared to 8.1'1 
significant dimension and one would expect the adiabatic approximation 
to be a good one. However in D.C.X. the Lann.or orbit is comparable with 
the di.mens ions am one might well doubt the validity of the adiabatic 
approximations. However it is just in this case that one can use the 
principle of absolute confinement which is in this sense complementary 
to the adiabatic approximation. 

•Note that the 'transverse' energy is now defined as that in the 6'-
direction rather than that perpendicular to the field. 
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ON PINCH STABILIZATION OVER LONG DURATION 

George Schmidt* 
Stevens Institute of Technology 

Hoboken, New Jersey 

and 

I. Shechtman 
Israel Institute of Technology 

Abstract 

PAPER 14 

<-----.,, wave length perturbation modes of a linear pinch can be effectively 
through the use of a concentric conducting cylinder, In practice 

conductivity of the cylinder prevents stabilization of slow per-
For the stabilization of these modes permanent diamagnets are 

Some methods are proposed for simulating such diamagnets with 
of liquid metallic walls in fast motion. Arrangements are shown 

static magnetic fields where the moving liquid metals perform 
of a diamagnet with/< = 0. 

of long wave lengths in a pinched discharge are known to 
a conducting wall1. The working principle of this method can 

be seen in Fig. 1. When the discharge is displaced from its central 
t'..., ....... ,,v .. occupied in a., to that of b., the field in the vacuum becomes distorted 

the magnetic field inside the condenser is "frozett". The distorted field 
a force 'ft on the discharge tending to push it back to the central 

position. 

conductivity(/) is finite in any concrete case (except for super-
' but they don't work in the presence of strong magnetic fields), 

obvious that this method works only for rapid perturbations, where the 

J. Tayler, Proc. Phys. Soc. B. Vol. 70 1049(1957) 

work was performed while in residence at the Israel Institute 
Technology 
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,~,l.t~racteristic time of perturbation T is much smaller than the time needed 
~fbr the perturbation of the field to penetrate the wall. This latter is of the 
~~rder of.Yp Z. ~ 0 • er Jl.- where£ is a n:-:asure of the _linear dimensions of 
0~e metal and /f0 is the vacuum permeab1hty2 (MKS units are used). When 
~ i.-77 );the perturbed field penetrates the wall unhindered and the stabilizing 
*tfect ~ompletely breaks down. Asj f> is only of the order of a few milliseconds 
~i'n. practical arrangements it is worth while to look for methods applicable to 
~~pparatus that might be designed for steady or quasisteady regime. 

~)· ·• One method proposed here is based on the use of a diamagnetic wall. 
\ttis. obvious (considering e.g. the mirror images) that a field is created 
it~nd.ing to push the discharge to the central position, no matter how small the 
f.perturbation frequencies and velocities. 

~~>we have for example, a wall made of an 11ideal diamagnet" (j" = O. B = 0). 
~'l'h.e field of a discharge transplaced from the center will be as in Fig. lb in 
~t~e.vacuum region, while the condu~or r~ains field free. This field is 
~~pdeed the unique solution of the V2 6 :.-/f0V~ i! equation: in the vacuum region 
~)Vith. the boundary conditions on the wall for the normal component Bnl = Bn2 = 0 
;:This solution is obviously independent of the history of former processes, in 
~bontrast with the case of an imperfectly conducting wall. 

5f{ In nature - with the exception of superconductors - materials with very 
~,tow susceptibilities only are known. Methods can be found however, to imitate 
\c:lia.rnagnetism in a certain sense. Two of them are outlined as follows: 

~< •• I. One method is to set a conducting fluid in turbulent motion. 
;;A,s the field is frozen into the fluid the chaotic motion of its elements re-
i\i~.\l1ts in a destruction of the macroscopic time average field, as described 
j~~y ~andau and Lifschitz·3 In a real case this effect is naturally limited 
·~9y the finite conductivity of the fluid. The field is therefore not complete-
~~yfrozen and the diamagnetism is imperfect. Considering conditions 
",'f~r.the setting in of turbulence it must be remembered, that besides the 
f~sud limitations (Reynolds number) the presence of a magnetic field im-
*i;ioses another one: the energy density of the magnetic field must be much 
~smaller then the turbulent kinetic energy density. 
:>.-,; 

''::::.'> 

~···. .z. The·'second method is to pump an originally field free conducting 
~fl;U.id sufficiently rapidly through the region concerned. 1£ the time T in 
~~hich a fluid element passes this region is much shorter than the pene-
i~ra,tion time1"f the fluid remains field free. This means that in our • 
~~xample where T = Lht(L is the characteristic flow length and ir the 
,£1.u.id yelocity):v<>/ ,,M'; ..-;:;s:-i Examples of possible arrangements are 
{{~llown in Fig. 2. Calculating this relation for liquid sodium - taking 
~~B = 1 m $ = 0, 1 m - we obtain V' -;.7 ~ ":1(.,.c... Of course a sensible dia-
tY< 
DX;~ 

Lyman Spitzer, Physics of Fully Ionized Gases - Interscience 
Publishers Inc. N. Y. 1956, p. 38 

L. D. Landau and E. M. Lifschitz, Elektrodinamica Sploshnich Sred, 
Page 302, Gosudarstvenoe Izdatelstvo Tehniko Teoretitcheskoi litera-
tu ry, Moscow 1957 
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~~etic effect can be obtained byl?'~I":~? In a practical case the 
l)ilizing fluid might act as a coolant too. 

Orn principle other methods to push the pinch back to the center can 
found. This is the case for example for a rotating conducting wall. 
an be shown that in the case where the field of the perturbed pinch 
etrates the wall this exhibits a tendency to drag along the pinch in 

\ rotation. If a phase lag exists a force acting on the pinch is created 
y ing a component towards the center. 
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I. IIfTRODUCTION 

BOUNDARY LAYER FORMATION IN THE PINCH 

s. A. Colgate, G. Gibson, and J. Killeen 
Uni.verstty o.f California, Lawrence. Radiation J,ahoratory 

Conta1Ill\1ent of pla6111as may be achieved by either vacuum magnetic fields or 

pinch r.1Bgnetic fields. VacuWll magnetic fields are created by external coils, 

whereas in the pinch device the primary current is induced in the plasma, and 

without this current there exists no containing field. The current and magnetic 

field spatial. diGtributions are of interest since the degree of stability of the 

pinch plasma colWllll is dependent on the sharpness of the boundary. 

In this paper processes that determine the pinch current's spatia.1 distribution 

for times prior to the implosion of a deuteriUlll plasma are examined, A one 

problem is treated 'Where there is an externally applied stabilizing magnetic 
:field 

in the direction 6f the electric/'<lhich immobilizes the charged particles 

It is assumed that this field is of such a magnitude as to make the heat and charged 

particle dif'fusion terms across the field negligible. In this manner, wall effects 

are al.so conveniently elillinated. Further, the strength of the self or pinching 

magnetic field (component of the lilBglletic field normal to the electric field) is 

considered to be be smaJ.l rela12Te to the stabilizing magnetic field over the 

of time for "Which the results are significant. Hence, mass motion of the plasma is 

ignored. As a result of these assumptions, the stabili~ing field does not appear 

eXplicitly in the calculation. The validity of these assumptions is examined in the 

disucuasion of the results. 

The plasma equations of Wyld and Watson1are generalized to include spatial 

dependence. The different particles are treated as having loca.l Maxwellian 

l.wy1d, N. W. and Watson, K. M., Gatlinburg Controlled Fusion Conference Proceedings 
(June 4-7, 1956)T.I.D. 7520 • 
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.£f:!.butions, i.e., temperatures a.re assigned. This is a liliitation on this work 

b~ for the particle densities and electric field strengths utilized in pinch work 

electrons should tend to "run-awey". However, should this effect result only . 

~reduction of the effective resistance then within the framework of this calculation 

skin depths should be 5lllaller than those calculated. In addition to the electron 

ion temperatures the variables of the problem are the percentage of ionization, 

resistivity of the gas, and the current density. Since the current and resistivity 

interdependent the plasma equations are coupled to the field equations. 

is set equal to a constant applied electric field 
the bolll'l.dery of the plasma the electric field/ minus a self induced electric 

It is also assumed that tlle current density and its derivative go to zero 

distances from the plasma boundary. Some physical situations for'lohich this 

applicable are discussed a.long with tlle results. 

computations were performed on the I.B.M. 704 at Livermore. 

FIELD EQU.A!l'IONS 

H)Jy,t) 

·.,,,· Fig. 1 The Field Variables 

problem considered (see fig. 1) is one dimensional, i.e., the electric fiela._ 
..> 

magnetic field, H, and the current density, j, are functions of y and t. 

of tlle magnetic field, Hx. (7,t), is the self magnetic field 'mich results 

(y,t); the z component of the magnetic field, Hz, is the 

applied constant ste.biliziog field. ~e field equations are then 

= -
l OBX 
c~,a.s;y<a:>, 

4:rc 
c 
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Ez = T\z jz , a $ y < co ' ( 3) 

where T\ (y,t) is the resistivity of the plas:na. 

D:t.frerentiati.ng Eq. (3) vrith respect toy gives (let j = j and 1l = T\ ) z z 

~ 
z a < . ) 

~=""SY T\J • 

Then from Eq. (1): 
i dBx: o· - c ~ = QY (11J) • 

Nov differentiating the above yields 

1 o~x '(32 
- c ~ ~ .. ay2 {T\j) 

Dif'f'erentiating Eq. {2) with respect to t gives 

d2itx 
~ 

Using Bx = µ Hx then gives 

for a ;S; y < CD 1 t ~ O. 

4n =---c 

( 4) 

Equation ( 4) is the differential equation to be solved for the current density, 

j (y,t). It is a nonlinear equation since T\ depends on j through the plasma 

equations. 

lll.e boundary conditions which are used for Eq. (4) are 

j ~ Oas y......, ro , 

di and E0 - L dt = T\ {a,t) j (a,t) , 

lib.ere E
0 

is a constant applied electric field, 

L is a constant inductance, 

and 1 is the total current, i.e •• 

i l j d y. 

Eq. 6 :na;y be rewritten as 

or 

E
0 

- l~ dt Joo j d y .. T\ (a, t) j (a, t) , 
a 

CD 

E0 - L ~ ~ d y = 1l (a,t) j (a,t). 
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[~sti tuting Eq. ( 4) into the above equation 

or 

were 

Let 

E + 0 

c2 
a - l...S: - 411µ 

Ico i:_ ('lJ) d y ,,; 'I (a,t) j (a,t}, 
a dy-2 

OCn.i)/ = TJ (a,t) j (a,t), 
""lfl3=~ 

~~O as Y-1'00 () y 

then the boundary condition becomes 

E0 = Tl (a,t) j (a,t) - a ~I 
. y = a • 

(8) 

(9) 

As an initial condition the resistivity of the gas .is taken to be uniform, 

i. .e., 1} ( y, 0) = 'l ( 0) • The ini tie.l current density 111f1Y then be taken as zero, 

or an initial current density mey be chosen satisfies the conditiens as y ....... oo; 

_(y-a) /{J 
j (y,O) = j

0 
e 

8nd to be consistent with the boundary condition Eq. (8) ve have 

III. Pi:.AaMA EQU/d'IOHS 

The energy- be.la.nee equation is 

\mere 'l (y,t) is the resistivity of the plasma, 

j (y,t) is the current density, 

E
0 

is an average ionization potential (16.2 ev}, 

a E
0 

is the average energy expended per ion pair (ion plus electron) 

ne (y,t) = n1(y,t), the electron and ion densities, 

ee (y,t) = lLTe, the electron temperature, and 

e1 (y,t) = k Ti, the ion temperature. 
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The lei't hand side of Eq. 12 is the re.te of ohmic heating per unit volume. It 

asswned that this energy goes into the ionization of neutrals, and heating of the 

charged particles. The first term on the right hand side of Eq. 12 is the energy 

expended on ionization. It essentially represents an energy drain ,on the electrons. 

Now the ionization of the deuterium mol.ecule ~ proceed in va.rio11s ~s, end in 

general is not a one step process. However, this complexity is avoided byfrrea.ti.ng 

the deuterium gas e.s 11t>natOlllic with an average ionization potential, fi!0 ~ ':Cb.e cross 

section for ionization is taken to be the same as for the ionization of D2• Energy 

losses, such as inelastic collisions of electrons with neutrals~ are included in the 

factor a. For example, if on the average a• excitation collisions occur for ea.ch 

ionization collision 'nth the same dissipation of energy, then the 

loss per unit volume is a• ~o ~ • We choose a= a. (two) 

Because or the mobility of the electrons, their temperature increases much 

under the ini'luence of the electric field than that of the ions. For electric fields 

of the magnitude employed in pinches the electrons will rapidly reach a kinetic 

temperature corresponding to the ionization potential. Because of the mass difference, 

the electrons give up little energy to the neutrals during their lifetime, i.e., the 

ionization time is short as compared to an enere;y exchange time. If is for this 

that the change in temperature of the neutrals is not included in Eq. 12. At the 

c0111pletion of ionization the electrons lose energy prim.G.:rily by transferri..Dg it to the 

ions. It is e.ssUI:led that the Bremstrahlung Radiation is negligible for the electron 

temperatures achieved during the time before the implosion. Charge exchange effects 

should also be small for the times of interest at the densities and energies for this 

problem. 

The resistivity of the partially ionized plasma is 

(13) 

where m is the electron ms.ss, 

e is the electron charge 

\Ii is tbe collision frequency of electrons with ions, and 

"n is the collision frequency of electrons with neutrals. 

Electron collisions with neutrals are retained in the definition of electrical 

resistivity since the collisions iapede the motion of the electrons in the direction 

of the electric field. 
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Tbo effective v 1 is 

0.582 e.ccounts for 

"'n = (no - ne) 

density, 

ln (~::)]-a~n-~7..,....2-

electron-electron 
3 a l/ 2 

e ) 
• a ' 

e 
2. 

collisions, and 

section for electron collisions vith neutrals. 

3 x 10-16 ca2 •. 

(14) 

(15) 

the resistiTity as defined does not depend nn the ion density, nj, or 

Bi' but only on the electron temperature and the fraction of ionizatiCl:l.o 

particles s.re treated as stationo.ry targets (i.e., zero tenperature), 

'l'he ionization equation is 

C.e 
~ = n (n - n ) oi v , 
u~ e o e e (16) 

i6 the ionization cross section, and ve is the electron velocity. 
3 

'l'b.e ionization cross section is obtained by fitting published experimental results. 

ai = o, e < e0 
= (16.2) (1.6 x l0-12) ergs 

4 (~ - 4)2 ' e .(e<4e: ai = 1.:.20- - 30 E 0 0 
0 

ai 1.36- 0,04 _€_ · I 4 E o< e < 20 e 
E 0 

0 

ai = 0.!5(i • e) :.20 E (17) 0 

is expressed in units of 2 

qu&:.o.tity ~ ia obtained by averaging over a Maxwell-BoltZlllSlUI. 

e u.. 0 e e 

= -2 a 2 (2Jt 
0 

+ (0.16 -0.987 1 
G' 

9 1 

[<-o.8 -e )2 • 
l o.8 J. )e -lfa + 

Spitzer, L. :Aiyaics of Fully Ionized Gases, p. 84 

4 1 l ) -;(I 3 a + o.8 -2 e 
a: 

(-o.8 - 0.08 ~e -20a], 

(18) 

N. 1. and Massey, H.S.W., rile Theory of Atorllic Collisions, Oxford Press, 
Page 2451 l.959 
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The equation giving the rate at which energy is transferred from electrons to 

ions is 

'Where M is the ion aass. 

b 
ln (bmax ) ' 

min 

"!V SUMMARY AND ~OD OF SOLUTION 

ne ni 
Let r., il = il, end let ee , e1 be expressed in units of e

0
, the 

(19) 

0 0 
ionization potentie.l.. Let 1) be in units of 11

0 
= ~ , then we can 

c 
summarize the equations to be solved 

.. -

- 2 o.8 ee ) 

+ (-0.16 + 0.987 Qe + o.8 ee2) 

20 
+ (o.8 + 0.08 e ) e- 9"" e e 

wnere the constants ere 

2 
~ .. 3 ~ 

n e 
0 0 
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( 20) 

( 2l) 

( 22) 

(24) 

(25) 



2 2 ~rr e0 a n __ _ 
o o m 

8 i/ 2 :rt m 4 - J b max 
A5 "' n e € 2 ln -b-3 M 0 0 min 

A6 
1 

"' 1J 

The solutions of Eq. (22) - (25) with j = constant is the problem considered 

pa.per of Wyld aud Watson1
• The resulting set of ordinary differential equations 

solved nu;uiexically' 

If we let 1J = constant, Eq. (20) becomes 

conditions 

initial condition 

j (a,t) - a ~I 

j {y' 0) 

j ( 1 + 
0 

a:S.y< oo , tZ,0; 

y = e. 

problem can be solved by using the Laplace transformation and the solution is 

[ l 
2 -

!£ - tx lG . ~ x + x cos y - a J E i-2 e a sin ("if --x 
0 2 Vil 

"' -
1J a rr 

x (x2 + n) (x2 + !L) 
2 a 

' 

solution to this special case can be evaluated in terms of error fUnctions 

quite i..1sefu.l in checking the results in the early stages of the more general 

Iu order t,o solve the complete system of equations (20) 0 (25), we 

of finite difference equations. Consider the mesh 

t 
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The implicit difference equation corresponding to (20) is 

J n+l 
J, 

~t [ n+l 
2( t:..y)2 fl.t+l 

[ 
n n 

'11.t+l j.t+l 

J, = .t
0 

+ l , •••• , L - 1 

The boundary condition at y = a becomes 

n+l 
l\£ 

0 

n 
2 l\.e 

j n+l 
.t+l 

2T) n+l 
t 

n 
11.t-l 

. n+l 
J£ +l 

0 

J n+l 
.t + 

n+l 
'1£-1 

j n+l ) 
£0 

The maximum value of y in the mesh is 141. In order to treat the imposed conditions 

on j a.a Y-"00 , Ji. is set equal to zero, but the distance Ll\Y must be taken 

large enough so that the solution is not IU'fected by changes in the cut-orf. The 

cut-off distance is a. result of numerical experimentation and differs with the various 

cases presented. The method of solution of the implicit difference equations is given 

by Rich~er~ 
llle Eqs. (23) - (25) must be solved a.teach value of /, in the mesh. Since they 

do not contain spatial derivatives, they ca.n be considered as ordinazy differential 

equations and solved by a standard me'thod for each J,. 

V • REStrul'S AND MODELS 

It is know that in addition to an externally applied Bz, a surrounding 

conducting wall enhan.cea the stability of a plasma colunm. Suppose in Fig. 1 

that the plane at y .. 0 is a conductor. If the region O $y~a ~.s occupied by a 

dielectric, and a plasma oceupiea the region y2a then a charge density is 

deposited on the surface of the dielectric which neutralizes the polarization 

Charge density and the electric field lines in the plasma. then do not terminate on 

the eurte.ce, but run in the z direction as assumed in the model. 

We can derive the boundary condition at y = a under these conditions. 

Integrating Eq. (l) with respect to y gives 

/.I 

Ez (y, t) - E .. -
0 

a d 
c at (a, t) - l 

c 
.£.. Jy B ( t, t) d t at x ~ 

a 

R. D. RichUey'er, Difference Methods f'or Initial-Val.ua Problems, Interscience, 1'. Y. 
page 101. 
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have E ( y, t)-+ 0 as y->oo , z 

a 9_ B {a, t) - 1 
c ot x c (y, t) d y 

y 

Hx (y, t) - Hx (a, t) =- - ~n: j J ( ~. t) d ~ 
a 

H (y,t)_,o as y~oo, so x 
00 

Hx (a, t) =- ;n: f j ( y, t) d y 
a 

(I) 

{ 26) 

( 27) 

Hx (y, t) =-
4
: f j (y, t) d y - j ( ~. t d ~ , 4cn: Jy ) 

a oo 

H (y, t) " !in: J j ( ~' t) d ~ x c (28) 

y 

Eqs. ( 27) and ( 28) in ( 26) ve have 

00 r J(~, t) d ~ ~ + 2 
c 

( ~, t) d ~ 

a a y 

([) 

f dy ( £9) 
a 

( £.X)) we have 

by parts ve have 

CD f Wl d y 

(y, t) J (y, t) ~o as y->too , 

:!.f 'We &SSUllle y as Y-)CD ; 
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then 
~ (a, t) J (a, t) - a ~/ 

y"' a 

is the boundary condition at y = a. This corresponds to Eq. (9), "Where ·a is 

nov taken to be the Uiickness of an insulating region between the conducting 

Shell and the plasma. This di stance fixes the inductance in Eq. ( 6) by using Eq. 

For an a ~ l cm. we present two cases of. interest. The first case is for an 

applied electric field E0 = 100 volts/cm, and the gas density ~ m lol5/cm3. 

'l'b.is case corresponds to pinch devices at Livermore and Los Al.B1110s. In Fig. (3) 

the values of tbe plasma and field variables at the plasma boundary are plotted as 

a !'unction of time. In Figs. (4) and (5), j (y, t) and H (y, t) a.re plotted as a x 
:t'unction of distance from the wall for successive times. In Fi3.(6} the plasma 

variables are plotted as a function of distance from the wall at a time 

to completion of ionization at the plasma boundary. 

The second case for a= l cm. is for an E ~ 2 volt/cm and n "'lo1 3/cm3. 
0 0 

This case is intended to correspond to a large pinch device such as Zeta at Harwell. 

Similar results for this case are presented in Figs. (11) - (14). 

Another physical situation for "Which the model applies is the following 

Fig. 2. Torus Model 

Consider a torus with a non-conducting shell; end assume that the ininor radius, 

r 01 is emall compared to the major radius, R, and that the current skin depth, -, 

is ama.l.J. as compared to tbe minor radius; i.e. r 
~ «1 
R -'- << 1. r 

0 ..... . """ Integrating V JC B: - c over the area enclosed by the curve A B C D, 

whicb is within the current. lqer, gives r 

f 
0 ..... ..l 411 I H • d s 2. n r J d r c 

r 

f 2 He 
411 2 n J d r, using the above or n r .- - ro 0 c 

0 (Text continues on 
84 



10
3 

10
-2

 
io
t:
i~
 E

0
=1

00
 v

ol
ts

/c
m

 n
0

=1
oi

5 /c
m

3 
I 

"" 
I 

---
...I

 
10

4 

a=
 I 

cm
 

va
lv

es
 a

t 
th

e 
w

al
l 

y=
a 

j =
cu

rr
en

t 
de

ns
ity

 ,a
m

ps
/c

m
2 

10
-I 

10
2 

10
-3

 
io

7b
-t 

17
= 

R
es

is
tiv

ity
,o

hm
-c

 m
 

· 
8

E
: e

le
ct

ro
n 

te
rn

 p
.,

 1
6.

2 
ev

. 
I 

><
 

II 
---

:J 
10

3 

8i
=

io
n 

te
m

p.
,1

6.
2 

ev
. 

f=
fr

a
ct

io
n

 o
f 

io
n

iz
a

ti
o

n
 

H=
 s

el
f 

m
ag

ne
tic

 f
ie

ld
, g

au
ss

 
10

-2
 

10
-4

 
61 

I 
I 

X
I I

 
~
 

!0
2 

10
 

10
 e:

 
Be

 

Q
) 

10
-3

 
10

-5
 

1a5
l · 
~
 

Ci
t 

I 
/ 

I 
l 

~
I
 

10
 

~
-
' 

10
-4

 
10

-I 
10

-6
 

10
-5

 
10

-2
 

10
-7

 
10

-I 

10
-6

 
10

-3
 

io
-8

 
l0"

21
 

I 
I 

I 
I 

I 
I 

I I
I 

I 
I 

I 
I 

I 
I!

 I
I 

I 
I 

I 
I 

I 
I 

I 
II

 
I 

I 
I 

I 
I 

!_
I 1

1 10
-3

 

10
-3

 
1

0
-2

 
10

-I 

TI
M

E 
IN

 M
IC

RO
SE

CO
ND

S 

Fi
gu

re
 3

 



Io:> 

3 
10 

2 
10 

y-a 

E 0 = IOOvolts/cm n0 =10 15/cm 3 

a= I cm 
j =CURRENT DENSITY, amp/cm2 

1.0 
CENTIMETERS 

Figure 4 

86 



m
 
~
 

1a3
 

10
 

E
0 

• 
10

0 
vo

lts
 /

cm
 

n 0
 •

 
10

1 ~
/c
m
3
 

a
=

lc
m

 
·{ 

H
 •

S
E

L
F

· 
M

A
G

N
E

TI
C

 
F

IE
L

D
, 

ga
us

s 

y
-a

 .. 
IN

 
C

E
N

T
IM

E
T

E
R

S
 

Fi
gu

re
 5

 

4 
5 

BE
= 

E
LE

C
T

R
O

N
 

T
E

M
P

.,
 1

6.
2.

ev
 

9j
 =

 IO
N

 
T

E
M

P
.,

 1
6,

2.
ev

 
I
•
 F

R
A

C
T

IO
N

 
O

F 
IO

N
IZ

A
T

IO
N

 
fl=

 
R

E
S

IS
T

IV
IT

Y
, 

o
h

m
-c

m
 

A
L

L
 

A
T

 
I=

 0
.2

.5
µ

.s
e

c 

-
-
-
-
-
-
-
T

J
 

-
-
-
-
-
-
-
-
e
j 8E

 

-2
 

-5
 

IO
 0

 
I 

2 
3 

4 
5 

6 
IO

 

y
-a

 
IN

 
C

E
N

T
\M

E
T

E
R

S
 

Fi
gu

re
 6

 



C
J)

 
CD

 

Bi
 

8E
 

.,., 
10

2 
10

4 
10

-I 
10

6 E
 

I 
I 

I 
t 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
ii

 
I 

'I')
 
-
-
-
-
.
J
_

_
 

I 
"7 

10
 

1
0
~
 

1
0
-
~
 

10
~ 

~
 

E
0

=1
00

 v
ol

ts
 /c

m
 , 

n 0
=1

015
/c

m
3 

O
"'I

O
cm

. 
va

lv
es

 a
f 

th
e 

w
al

l,y
=o

 
j=

cu
rr

en
t 

de
ns

ity
 ,a

m
ps

/c
m

2 
10

2 
10

_3
 
10~
 

17
=r

es
is

tiv
ity

,o
hm

-c
m

 
8E

 =
el

ec
tr

on
 t

em
pe

ro
tu

re
,1

6.
2 

ev
 
~
 

B
i"

 io
n 

te
m

pe
ra

tu
re

, 1
6.

2e
vH

 
f•

fr
o

ct
io

n
 o
~
~
 

H=
 s

el
f-

m
ag

ne
tic

 
10

-I 
10

 
10

-4
 1

03
~
 

fie
ld

, g
au

ss
 

10
-2

 
I 

10
-3

 
10

-1
 

10
-6

 1
0 

Be
 

10
-4

 
10

-2
 1

0-
7 

I 
f 
-
-
-
-
-
-
-
.
.
.
,
~
:
.
.
_
_
 _

_
_

_
_

 __
 

Bi
 

I 
I 

I 
I 

I 
I 

ii
 

I 

/ 

I 
H

 

/;
j 

\I
 )d8

E Bi
 

.,., f 

I 
I 

I 
I 

f 
IQ

 
f 

H
 

__
j 

10
3 

-J
 

10
2 

~
 

10
 

10
-1

 1
0-

1 

10
-2

 

-I
L

 
I 

I 
' 

I 
I 

I 
I 1

1 
I 

I 
I 

I 
I 

I 
I 

11
 

I 
I 

I 
I 

I 
I 

I 
11

 
I 

I 
I 

I 
I 

I 
I '

' r
o-

3 
10

-5
 

10
-3

 
10

-B
 K

) i
o-

3 
10

-2
 

I0
-1

 
10

 



(D
 

co
 

10
2 

10
 

1.0
 JL

 s
ec

. 

o=
IO

cm
 

E
o=

IO
O

vo
lls

/c
m

 
n 0

=1
015 Jc

m
3 

j =
cu

rr
en

t 
de

ns
ity

 a
m

ps
/c

m
2 

2 
3 

( 
y-

o
) 

in
 c

en
tim

e 
le

rs
 

Fi
gu

re
 8

 

4 

H=
 s

e
lf

-m
ag

ne
tic

 i
ie

ld
,g

au
ss

 

0.
00

1 
-
-
~
-
_
 .....

.... _
_

 ....
._ _

 
__

...
.._

 _ 
__

._ _
_

 _ 
5 

0 
2 

3 
4 

5 
y-

a
 

ce
nt

im
et

er
s 

Fi
gu

re
 9

 



8E,8i ,f 
1.0 -------------------------

10-1 

I0-2 
Bi 

2 3 

Eo= 100 volts/cm n0 =10 15tcm3 
a==10cm 

BE= electron femp.,16.2 ev. 
8i "'ton temp.,16.2ev. 
f "'fraction of ionization 
,,,=resistivity, ohm cm 

all at 1.0µ. sec 

4 5 

y-o centimeters 

Figure 10 

90 



I c5
1 

10
3 

1
0

2
I0

6
l=

--
--

E
o

• 
2

v
o

lt
s
lc

m
 

n
0

• 
I0

13
/c

m
3 

\tJ
. 

I 
--

J
 

10
5 

'
a 

•
I 

cm
 

V
A

LV
E

S
 

AT
 

T
H

E
 

W
A

LL
 

y 
=a

 

j 
•C

U
R

R
E

N
T

 
D

E
N

S
IT

Y
, 

o
m

p
/c

m
2

 

10
-2 

10
2 

10
_ 31

05
1=

--
'I

J
•R

E
S

IS
T

IV
IT

Y
, 

o
h

m
-c

m
 

\ 
I 

II 
--

-d
 

10
4 

8
E

• 
E

LE
C

T
R

O
N

 
T

E
M

P
.,

 1
6.

2 
ev

 
BE

 
8i

 =
IO

N
 

T
E

M
P

. 
, 

1
6

.2
 e

v 
f 

=F
R

A
C

T
IO

N
 

O
F 

IO
N

IZ
A

T
IO

N
 

I0
-3

 
10

 
1

6
4

10
 

H
 •

S
E

L
F

-
M

A
G

N
E

T
IC

 
F

IE
L

O
, 
.
/
 

/Y
I 

~
 

10
3 

ga
us

s 

~
 .... 

16
4 

I 
/ 

~
 

/ 
I 

\ 
-
J
 

1
0

2 

16
5 

10
·1 

10
 

10
"6

 
10

·2
 

10
·1

 
10

 

10
-1

 
10

-3
 

la
°8

 
11 

I 
I 

I 
I 

I 
I 

I 
! I

 
I 

I 
I 

r1
J
 I 

fl
 

I 
I 

I 
I 

I 
I 

I 
11

 
I 

I 
I 

I 
I 

I 
! 1

1 10
-2

 
_8

 
I 

10
 

1
0

 

T
IM

E
 

IN
 

M
IC

R
O

S
E

C
O

N
D

S
 

Fi
gu

re
 1

1 



co
 

N
I 

J
0
4
r
-
r
-
-
r
-
-
r
~
-
~
~
-

10
3 

10
2 

I 0
 M

--
--

"-
-"

 

-1
 

10
 

0 
5 

E
o 

= 
2 

vo
lt

s/
cm

 
n 0

= 
J0

13
/c

m
3 

o 
= 

I 
cm

 
j 

=
C

U
R

R
E

N
T

 
D

E
N

S
IT

Y
, 

o
m

p
/c

m
2 

JO
 

15
 

20
 

25
 

3
0

 

H
 

10
3 

10
2 10
 

-I
 

10
 

~
~
-
-
-
,
-
-
-
-
,
-
-
-
-
-
.
-
-
-

E
0

= 
2 

vo
lts

 /
c
m

 
no

= 
J0

13
/c

m
3 

o 
=

\c
m

 

H
 

=
S

E
L

F
-M

A
G

N
E

T
IC

 
F

IE
LD

, 
ga

us
s 

162 
....

....
 .-

..
~.

-.
..

~~
..

_~
~ .

....
... ~
~
~
~
~
'
-
'
-
~
~
-
-
"
~
~
-
-
-

o 
5 

10
 

15
 

20
 

25
 

3
0

 



ei,t eE 
--~~..-~~-:-~~-r-~~.....,-~~--y-~~ ...... ~~--,1 102 

5 10 15 

E 0 =2volts/ctn n0 =10 13tcm 3 

a= I cm 

BE= ELECTRON TEMP., 16.2 ev 

Bi =ION TEMP., 16.2 ev 

f = FRACTION OF ION 1ZATION 
17= RESISTIVITY, ohm-cm 

20 25 30 
y-a IN CENTIMETERS 

Figu:re 14 

93 

10 1 10 



co
 
~
 

ei 
eE 

.,, 

-2
 

3 
-I

 
10

5
b

--
10

 
10

 
10

 

--
-3

 
10

 
10

 

-4
 

. 
10

 -5
 

10
 

10
 2 

E
0 

• 
2 

vo
lt

s/
cm

 
no

• 
1d
~c
m5

 

o 
• 

5
0

cm
 

-2
 

4
6-

VA
LV

ES
 

A
T 

T
H

E
 

W
A

LL
, 

y 
=a

 
10

 
10

 
j =

C
U

R
R

E
N

T 
D

E
N

S
IT

Y
, 

om
p/

cm
2 

T]
 •

R
E

S
IS

T
IV

IT
Y

, 
o

h
m

-c
m

 

8E
=E

LE
C

TR
O

N
 

T
E

M
P

.,
 1

6.
2e

v 
81

 =
IO

N
 

T
E

M
P

.,
 1

6.
2 

ev
 

-3
 

3
1

=
--

f 
•F

R
A

C
T

IO
N

 
O

F 
IO

N
IZ

A
TI

O
N

 
10

 
10

 
H

•S
E

L
F

-M
A

G
N

E
T

IC
 

F
IE

LD
,9

ou
ss

 

-4
 

10
 

I I 

16
6 

10
1 

10
5 

10
 E

 
~
 

:;;
> 

-7
 

-2
 

-5
 

10
 

10
 

10
 

f 
H

 

I 
] 

10
4 

"' 

" 
/ 

1-1
-td

 
10

3 

Q
, 
~
 

~
I
I
 
-J

 
10

2 

10
 

10
1 

10
1 

10
7 

16
1 1

 
I 

I 
I 

I 
I 

I 
I 

1 I 
I 

I 
I 

I 
I 

I 
11

1 
1

--
--

-±
::

f 
I 

I 
I 

I 
1 I

 
I 

I 
I 

I 
I 

L.
J.

.l.J
16

2 
la

°2 
10

-1 
I 

10
 

10
2 

T
IM

E
 

IN
 

M
IC

R
O

S
E

C
O

N
D

S
 

2
9

7
9

0
-2

 



co
 

C1
I 

Eo
 =

 2
 v

ol
ts

 /
cm

 
n

0 
= 

I0
13

/c
m

3 

a
=

 5
0

 c
m

 
·(

 

j =
C

U
R

R
E

N
T

 
D

E
N

S
IT

Y
, a

m
p 

/c
m

2 

~.
9 .~

 ... ~(
' 

10
2
~
~
~
~
~
-
-
~
~
~
~
~
-
-
~
~
~
-
-
~
.
.
.
.
_
~
-
-
-

o 
2.

5 
5.

0 
7.

5 
y

-a
 

IN
 

C
E

N
T

IM
E

T
E

R
S

 

F
ig

ur
e 

16
 

E
0

=
2

v
o

lt
s
/c

m
 

n 0
=

1
0

13
/c

m
3 

a 
= 

5
0

 c
m

 

H
 =

S
E

LF
-M

A
G

N
E

T
IC

 
F

IE
LD

, 
ga

us
s 

J'
,, 0 • o

9 ,,...!
' ~(

' 

I0
2
L
-
~
~
~
~
-
-
-
1
.
~
~
~
~
~
-
-
L
.
.
~
~
~
~
~
-
'
-
~
-
-
-
I
 

0 
2.

5 
5.

0 
7.

5 
y-

a 
IN

 
C

E
N

T
IM

E
T

E
R

S
 

F
ig

ur
e 

17
 



-3 
10 

-5 

E 0 =2volts/cm n0 = 1013/cm3 
o = 50 cm 

11 =RESISTIVITY, ohm-cm 

BE=- ELECTRON TEMP., 16.2ev 

Bi"' ION TEMP., 16.2ev 

f "'FRACTION OF IONIZATION 
ALL AT t = 401' sec 

10 ...... ~~ ....... ~~--"~~~--~~ ..... ~~----'~~~..._~~-
0 5 10 15 20 25 30 

y-a IN CENTIMENTERS 

Figure 18 

96 

10 

1.0 

0.1 

0,01 



SuJlPC)se tile field in tbe symnetry plane containing the torus is obtained by 

a single circular current loop. This i'ield may be approximated 

expression 

i 
c 

due to the plasma current wich passes tbrougll the su.mmetry plane 

enclosed by tile torus is 

f
ro 

~ m 2 n µ H9 (R - r) d r, 

R 
using tbe above expression for H6 gives 

a= 

i 
c 

expression for H9 gives a total enclosed flux which agrees to 

1/ 2 o/ 
0 

of tile numerica."L result. Now in the center of tile torus, 1.e., at 

assume tllat there is a changing externally applied magnetic field which gives 

electric field, E
0

, at the plasma. 

E 
0 

1 1 
c 2nR 

d/Jo 
dt 

field at the boundary of the plasma. is 

E 
0 

a -

our one dimensional model we have from Eqs. (6) and (8) 

Ea Eo ~ at' 
2 a bt c 

; 
1 1' 211 for the torus, BO r 

0 

a cl Ct - ln Ct 
ro 

di 
6t. 

( 30) 

( 30) enables us tQ calculate an effective value of a in our one-dimensional model 

a particular torus. 

Consider a small torus where about 1 then B 
a ia 
ro 

2. For tbe case a = !O cm • we present a case witb E
0 

100 volts/cm. 

.. lo1 5/cm3 in Figs. (7) - (10). 

consider a large torus ..mere : 50 cm. and R ... 160 cm. 
ro 

then a is 

l. For the case a ~ 50 cm. we present a case with E
0 

= 2 volts/cm. and 

""101 3/ cm3 in figs. (15) - (18). 
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CIRCUIT DYNAMICS OF THE PINCH* 

J. Killeen and B •. A. Lippmann 
University of California 

Abstract 

Instead of analyzing in detail a portion of a hydromagnetic 
pinch apparatus and replacing the remainder by a. boundary condition, 
the entire pinch apparatus is treated as a single dynamical system. 
A circuit equation and a mechanical equation, coupled together, 
result. These equations describe the dynamical development of the 
pinch and exhibit explicitly its dependence on the physical para.m-
eters (electrical and mechanical) of the system. As examples, the 
equations have been used to analyze the snow-plow model and the 
adiabatic pinch, yielding curves that show the geometrical develop-
ment of the pinch in time, as well as the distribution of mechanical 
and magnetic energies at any stage. Analogous analyses may be made 
for other physical quantities of interest, and can be used to ad-
just the parameters of the system so as to optimize specific pinch 
characteristics. 

Dr. B. A. Lippmann: I should like to talk about some work that John 
Killeen and I did a couple of summers ago. The problem is neither 
subtle nor particularly difficult. In some respects it is trivial, and in a 
minor way it is even useful. 

What we did was to analyze the behavior of a pinch tube, including the 
reaction back on the source. That is, instead of considering the pinch 
tube in detail, and representing the rest of the system by a boundary 
condition, we considered the entire apparatus as a single dynamical system. 

There were several reasons for d.oing this. One reason was that 
be done. Since everything about the external circuitry is known, there 
to be little reason to leave it out of the analysis. We also noticed that 
can calculate everything in detail if the geometry is simple enough; for 
one can derive expressions for the rate at which energy is put into the 
field, the rate at which work is done on the plasma, etc. 

The variation of these quantities as the pinch develops in 
calculated, and we felt that it might be quite useful to have this 
available. It is the fundamental prerequisite for a quantitative un~ers1vw1w.~ 

*This work was performed under the auspices of the U. s. Atomic Energy l;ornw.~o··~ 
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tile pinch, its diagnostics, and its design, and, in fact, that is what the 
C):nnation gained has been used for at Livermore. 

If we consider only the simplest case, a pinch apparatus is equivalent 
condenser and an inductance connected in series. The circuit equation 

Q + ,!__ (LI) = 0 c dt 

te Q is the charge on the condenser bank, C is its capacitance, and L is 
inductance of the pinch tube. 

We also have a mechanical equation: 

1 2 d.L 
W = 2 I dt' 

is the rate at which work is done on the plasma. 

The inductance is known if, as we shall ass'ume, the pinch tube geometry 
s co-axial. However, we need a mechanical model before we can compute the 
'·fo be used in the second equation. We have analyzed two models: the snow 

.'\{model and the model of an adiabatic pinch. The snow plow model has 
ing for the ordinary linear or toroidal pinch tube, while the adiabatic 

d.el bears a strong resemblance to Zeta. 

For the adiabatic case, the mechanical equation integrates immediately 
use it can be replaced by the adiabatic condition: 

PV'Y constant. 

Pis proportional to r 2/R2, and the volume in the case of a co-axial 
cylinder is proportional to R2. So we find: 

IRr-l = constant. 

is put back into the circuit equation, which is then 
John Killeen will show you some of the curves that result. 

There is just one other matter that I think ought to be mentioned and 
at concerns the validity of using circuit equations in problems of this 

.Suppose the geometry was much more complicated and suppose the 
anical aspects of the equations offered no difficulties, could the 
trical features really be analyzed using circuit equations'? The answer 

1YeS, II in the following Sense. 

The circuit equations always work because they are a way of representing 
+ution of the Maxwell equations. However, one will not always enco1.Ulter 
l'cuit as simple as the series L,C combination we have considered here. 
circuit was simple because dissipation, whether in the form of ohmic 
es or radiation losses, was negligible. In addition, we have assumed that 
solution of the Maxwell equations could be described in terms of definite 

"qos where the electric and magnetic energies were concentrated (C and L), 
~ed together by only dominant mode interactions. 
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In more general situations, we would expect to find radiation and obltlic 
losses, as well as multi-mode interactions. The circuit equa.t!. on would then 
be replaced by a set of circuit equations, which, although complicated, could 
be "1ritten down using the known techniques of the theory of guided waves. 

I will now ask John to show you the curves. 

DR. KILLEEN: In the first slide we show the equations to be solved 

in the snowplow model. The circuit equation becomes 

and the mechanical. equation becomes 

where 
r 

Ti = Rw q= 

= -
l 
t) 

Q 

' 

(dq)2 d., , 

The results shown for this model in the next few slides are for a device under 

construction at Livermore. It is a linear pinch with tube length, J, = 30 cm. 
p 

The radius of the tube, Rw = 15 cm, end the shell radius, Rs = 16.5 cm. The 

external inductance, 

and the capaci ta.nee, 

Le, is l0-7henries. The 
-6 c = 18. 7 x 10 farads • 

ing values for the parameters 

q (0) = 10.6 

b 1.86 

charge on the bank, Q = 5 .61 could~~I" 

These characteristics give the foll~~:.} 

The results presented in the slides are for q(O) = 5, 10, 15 and b = 1, 2. 

In the first slide (fig. 1) we have ~ (T), '4hich gives the position of the 

imploding current sheath. In the next slide {fig. 2) we have Tl (T) which 

the velocity of the sheath. In the next slide (fig. 3) we have the current 
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energy balance equation is 

.J, W dUm ,.+ +- =0 dt 

[
l dq 2 d J W = A 2 (dT) df (b - ln ri) 

d ·[ 1 dq 2] - - (b - ln TJ) (-) df 2 d'l 

1jr = A ~ c! q2) 
dT 2 

A = 100 Rw 4 Jr o 

2 x lo-9 ;, c3 
p 

next three slides we show these quantities for the cases considered. 

The equations to be solved in the adiabatic model are 

~ TJ - l d't' 
q Q 

q = = [2 x 10-9 t c' I · , 
(~o p 0 

as before. We can solve the above equations for values 

parameters which correspond to Zeta. 
'--j 

Rs= 50 cm. 

Rw = 53.5 cm. 

Le= 
-6 3.3 x 10 henries 

.ep = 1160 cm • 

c = 0.13 farads 

Q = 360 coulombs (25 kv) 

Io = 50 x 103 amps. 

va.lues b = 1.5 and q (0) = 13. In the next four slides (figs. 7 -10) 
3.0 and q(O) = 5, 8, 13, 20. The case q(O) = 13 
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obtained from i and 
1) 

I = I 
0 

dq 
dt 

q(O) =•13, b = 1.5 the peak current is then about 300 kiloamps. 

the waveform seems to correspond to ·traces shown in the Geneva 

on Zeta. 
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PROGRESS IN THE ANALYSIS OF THE ASTRON E-LAYER* 

Lewi Tonks, Consultant 

Lawrence Radiation Laboratory, University of California 

Livermore, California 

Abstract 

The E-layer of the Astron, even in its uniform portion far from 
ends, is complicated by the slowing down of the electrons, by their 
scattering in angle, by the diamagnetism of the reacting plasma and by 
possible rotation effects from the angular momentum imparted by the 
repeated influx of the high energy E-layer electrons. As initial steps 
in an analytical attack two simpler problems have been solved. The 
is that of a cylindrical configuration of relativistic electrons, uniformly 
distributed in azimuth and all having the same canonical angular 
and energy. This is in a uniform impressed magnetic field which is 
modified by the E-layer electrons only. The second covers the gene 
zation to a spread in angular momentum but no spread in energy. In 
cases by basing the analysis on a delta-function distribution in constant-
of-the-motion space (a suggestion of E.G. Harris), the problem has 
reduced to the solution of a second-order differential equation in dimen-
sionless variables. The important parameters are (1) the ratio, G, of 
the radius of the E-layer injection circle to the radius of gyration of an 
injected electron in the uniform impressed vacuum magnetic field, (2) 
the ratio h/h2 of field strength within the layer and interior to it to the 
impressed field, (3) the ratio s 1/s.z. or t 1/t2 , of the smallest pericenter 
radius to the injection radius, and (4) the "number", (2 r /'I) N, of elec-
trons per unit axial length of layer, where r is the clasiical electron 
radius, y is the ratio of relativistic to restemass of the electron and N 
is the actual number of electrons/cm. The momentum range and 
distribution (in momentum space) are additional parameters in the s 
problem, but every useful purpose seemed to be served by using the full 
momentum range accessible to the electrons (with one or two 
exGeptions) and by using a uniform density distribution. 

The solutions to both problems have common characteristics: 
When G lies between negative infinity and unity, the injection circle is 

*Work ,was performed under auspices of the U. S. Atomic Energy 
Commission. Some of this material also is appearing under the title 
"Self-Consistent Field of Single-Type Electrons in a Uniform Magnetic 
Field, 11 Physical Review, May' 1, 1959. 

This paper may also be identified as Report UCRL-5522, Rev. 
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of pericenters and the E-layer lies wholly outside it. This case 
of physical interest but is covered mathematically by the range 

from unity to infinity. When G is less than 2, no field reversal 
sible up to the full limit of electrons which the layer will hold, In 

condition 

(2r /y)N = ZG ... 2 e max 

the ratio, h 1/h2 , of interior to impressed field is 

h/h2 IN {max)'""' Z/G - 1 

G is greater than 2, so that with few electons present, the electron 
do not encircle the axis (but with many they will), the same 
apply. The negative value for h 1/h2 shows field reversala 

values of G in the range 2 to -4 the transition, with increasing N, 
nonencirclement of the ax.is to encir-clement, is accompanied by a 

continuous decrease in h 1/h2 followed by further decrease into the 
range or within the negative range as N increases toward N • 

values of Gin excess of -4 the h 1/h2 - vs -N curves are doublepiax 
in h/h2 alone or in both h 1/h2 ana N. 

A third problem is in active process of solution. The mathematical 
is complete. The generalization here is to electrons which are 

to slow down from their injection angular momentum and energy 
to the energy loss, but not scattering, due to the Coulomb fields of 

reacting-plasma particles. The diarnagnetisrn of the plasma is still 
out. It has still been possible to formulate this very generally, but 

will be required to obtain the self-consistent field. 
The fourth problem will include {it is hoped) scattering as well as 

loss. The diffusion equation in moment= space has been derived, 
the actual attack has not yet been formulated., 
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~i•"u~~ PLASMA OSCILLATIONS IN AN ELECTRIC FIELD 

B. D. Fried 
Space Technology Laboratories, Inc. 

M. Gell-mann 
Space Technology Laboratories, Inc. 
and California Institute of Technology 

J. D. Jackson 
Space Technology Laboratories, Inc. 

and University of Illinois 

H. W. Wyld 
Space Technology Laboratories, Inc. 

and University of Illinois 

Abstract 

The properties of longitudinal plasma oscillations in an external 
field are investigated. In a completely linear approximation, it is 

that the d-c electric field introduces essentially no new effects. A 
approximation is also considered, in which couplings between 

plasma modes are neglected while the space-averaged distri-
functions are assumed to be approximately independent of time. In 

case, a Maxwellian distribution function is found to be always unstable 
the growth of very long wavelength oscillations. 

>,/ 

I. Introduction 

In the course of an attempt to understand in more detail the possibility, 
sted by Buneman, 1 that long range cooperative effects in the form of 

plasma waves may provide a new mechanism for plasma resistivity, 
studied the dispersion equation for longitudinal plasma waves in 
of an external electric field. While we have not, as yet, succeeded 

a quantitative understanding of Buneman' s mechanism, the 
concerning the effect of an electric field on plasma waves are self-

and may be of value also in other investigations. 

plasma composed of electrons and ions and assume that 

Buneman, Phys. Rev. Letters, ..!? 8 (1958). 
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the distribution function (in phase space) for each species obeys a collision-
less Boltzmannequation, with electromagnetic fields whose sources are the 
plasma charge and current density. Since the two-stream instability which 
Buneman considers involves only longitudinal plasma waves, we neglect the 
magnetic field due to the plasma current. We also assume that no external 
magnetic field is present. The problem is then essentially one-dimensional, 
and we have for the electron distribution function, f (x, v, t), 

~ + v ~ f - ...!:.. (E + E) !!._ = 0 . at ox m e av 

The ion distribution function, F, satisfies the same equation with 
e/m ~ - e/M. The external electrical field Ee (t) is a given function of 
time, while the self-consistent plasma field, E, is determined from 
Poisson's equation 

8E f fi = 4 tr e dv (F - f) . 

(1) 

(2) 

If E = 0, the linearized. form of these equations can readily be solved. 
The ;esulting dispersion equation2 predicts Landau damping3 if the 
unperturbed distributions have no relative mean velocity and gives growing 
waves if the mean velocities diifer by more than £ times the electron 
thermal velocity (for Ti = Te), where £ is a number of order one whose 
exact valuez depends upon the form assumed for the unperturbed velocity 
distributions. It is the aim of the present paper to generalize these field 
free results and to examine the effect of an external electric field upon the 
plasma waves. 

With the usual separation of f into a space averaged part, f
0

, and the 
fluctuations, f 1 , around that, we find that in a strictly linear theory f 0 

must be time-dependent. Consequently, the equation for f 1 does not have 
harmonic solutions and there is no dispersion equation in the usual sense. 
This is discussed in Section II. In Section III we consider briefly the 
consequences of assuming £0 to be time independent, as might be 
appropriate in a quasi-linear theory which takes account of the effects of 
the fluctuations upon f 0 but neglects the coupling among the fluctuation 
modes. In this case a dispersion equation of the usual sort can be derived 
and leads to growing waves with a Maxwellian f 0 even in absence of a 
relative electron - ion drift. We conclude that either the quasi-linear 
approximation with time-independent f 0 is inherently inconsistent or else 
that it demands a special form for f 0 , different in character from a 
Gaussian. 

II. The Linear Theory 

It is conve_nient to make a Fourier expansion of the x dependance of 
the distribution functions, 

f (x, v, t) == n f (v, t) + ~ fk (v, t) 
0 0 k 

ikx 
e 

2 J. D. Jackson, ''Plasma Oscillations," Physical Research Laboratory 
Report, December, 1958. 

3 Landau, J. Phys. USSR, .!.Q;. 25 (1946). 
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similar expansions for F and for 

E (x, t) 

* requires fk ::: £ _ , etc. The space averaged density of 
oth ions and electrons is indicateia'. by n , and f is normalized to 1. 

0 0 
k spectrum is made discrete by using periodic boundary condit ions 

a period L so that the allowed k values are multiples of 2 11"/L.) 
equations for the Fourier amplitudes are then 

8£ eE 8£ o e o at--rn- av 

a fk e E . IHk n e a f 
--+ikvf ___ e ~-.....2._E --0 

at k m av m k av 

;:: 
* Bfk _e_:I:E 

mn k Tv' 
0 

::: 4 ir e f dv (F k - fk) . 

(3) 

(4) 

(5) 

In the linearized approximation we drop the right-hand aides of Eqs. 3 
4. Then Eq. 3 is solved by taking f 0 to be an arbitrary function of 

u = v + (e/m) J: Ee (t') (6) 

0 

u and t as independent variables in place of v and t, we can 
as 

a similar equation for F k. 

n e df 
_o_E __.£ 

rn k du 
(7) 

. . Since the coefficients are time dependent, the solutions of Eq. 7 are not 
Jane waves and we cannot find a dispersion equation in the usual sense. 
_<>wever, we can solve Eq. 7 by using an integrating factor, 

: <:\ 

,<(} k (u, t) = e -ik[ut-q>(t~ {n ~Jt dt' 
· om 

0 

E (t') . ik(ut'-qi(t')] dfo + f ( O)l 
k e du k u, 'j (8) 
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where 

; (t) = (e/ru) f dt' (t-t 1 ) E (t') . 
e· 

The electron density is then 

"k (t) = I: du fk (u, t) = jk9'(t) {· k n:;,e r dt' Ek (t') (t - t') 

7
0 

[k (t - t•)J e -ik,.(t') + fk [ kt,:~ 
where the bar denotes a Fourier transform with respect to u, 

f (0) 
0 

fk (0, 0) = Joo du 

-oo 

-iu8 e fk (u, 0) , 

and an integration by parts has been used to transfer (d/du) from to 
exp [i k u (t 1 - tfl. Substituting Eq. 9 and a similar expression for ion 
into Poisson's equation, Eq. 5, we obtain finally an integral equation for 
E, (t). 

K 

E1.o (t) +...! J: dt' Ek (t') (t - t•{70 [k (t - <'8 jk(;-;'> 

+ ~ F o [k (t - t•B e -ikm(<f>-<f>')/M} 

where w 2 
p 

= (4 rr ei/k) [e ik'f>7k (kt, 0) -e -ikm<f>/M F k (kt, oij 

= 41T n e 2 /m is the electron plasma frequency. 
0 

In absence of the external electric field, <f> = 0 and the integral 
equation is of the convolution type. A solution is readily obtained by 
of Laplace or one- sided Fourier transforms, 

R(w) 
Ek (w) = 1 + D (w) 
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R (w) is the transform of the right-hand side of Eq. 11 and D (w) is 
transform of 

,,,/· t[7 (k, t) + (m/M) F (k, t~ p 0 0 ~ 

necessary and sufficient condition for stability of the oscillations is that 
denominator of Eq. 12 have no roots in the upper half w plane. This 

and the properties of D (w) have been carefully discussed by 

The integral equation is also simple if only electron fluctuations are 
In the limit m/M .,... 0 we have again a convolution equation, 

time for the quantity E e-iklfl, Since 1f1 is real, the stability properties 
identical with those in absence of an external field. 

For the case where neither m/M nor E vanishes, Eq. 11 is rather 
For any given initial conditions, ethe right-hand side of Eq. 11 

known and one could at least obtain a numerical solution. To determine 
stability properties, however, it is necessary to decide whether Eq. 11 
solutions with unbounded E for any initial conditions. This in-

}'".fo:rrr.1at is readily obtained from the usual dispersion equation but we do 
know a general technique for extracting it from the integral equation. 

'""'""···-progress can be made by rewriting Eq. 11 in terms of a formal 
representation, as follows. We solve Eq. 7 by formally inverting 

differential operator, 

n e[" .~-1 fk = - 0
- ~ + ik (u - "") m at 't' 

density is then 

the function g is defined by 

!co _1 df
0 g (x) = du (u - x - i E) du , 

-oo 

singularity in the integrand for real x being defined in the manner 
to an initial value problem. Substitution of Eq. 14 and the 

expression for ion density into Poissonrs equation gives the 
form of Eq. 11 

op. cit, p. 2. 
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where G is defined as in Eq. 15 with the ion distribution, F , in place 
of f . 0 

then 

0 

If f is Maxwellian, 
0 

f (u) = 
0 

z . 2 -u /a e 
1/2 

'Ir a 

-2 ;· g(€) =a Z'(€a) 

where Z (x) is the "plasma dispersion function" which is always 
in an analysis of plasma oscillations linearized about a Maxwellian distri-
bution, 

Z (x) -1/21
00 

-1 -'If d0(0-x-ir;;) 

-co 

2 2 
2

. -xzf ix 
= le e-q dq = Jn e -x - z x y (x) 

-00 

Y (x) being real for real x, 

y (x) -x -1 q z Ix 2 - e ' x 

0 

e dq 

(For some useful properties of Y and Z, see Jackson2 .) Even in the low 
temperature limit (a .... 0) Eq. 16 is complicated, for the asymptotic form 
of Z 1 is 

z 
Z 1 (x) _.. - 2 i fir x e -x + x - Z for x + co , 

giving 

Instead, we shall use the simpler function, 

g(€) = (~+ia)-z 

Jackson, op. cit, p. 2. 
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corresponds to the choice of a resonance shape distribution function 

-1 ( 2 2)- 1 
f 0 (u) = 'IT a \U + a . 

For the case where the two species have equal velocity spreads and 
masses (m = M, a = A), the equation for Ek is then 

(22) 

(23) 

ia term in the denominators, which represents Landau damping for 
particular f , can be eliminated by the substitution 

0 

-a kt Ek (t) = e y (t) . (24) 

(25) 

(26) 

the denominators in Eq. 25 and setting 

2 
y = j3 T\ (27) 

finally a fourth order equation for 11, 

(28) 

We now specialize to the case of a constant external field. Since 
instabilities tend to be more serious for the longer wavelengths, 

st study Eq. 28 in the limit of very small k. An explicit definition of 
small k" regime can be obtained by imagining that the external field is 

off at time t, leaving the two species with velocities 
= .± e E . t/m. The differential Eq. 28 can then be solved with an 

e iuKt . e , where u 1s a root of 
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The correction to the k = 0 solution, u 2 = - v2, is small provided 
kV/w < < 1. Thus, we consider k as "small" ii p 

If we define 

k<<:m.w/eEt. p e 

s = kt and y = e E /km e 

then the only explicit occurrence of k is in the factor k 2 on the right 
of Eq. 28. In the limit of small k we then have 

whose general solution is 

1/2- 2/ 1'\ = s z 114 (i y s 2) 

where z 114 denotes any Bessel function of order 1/4. 

The character of the small k solution is now clear. For some 
of initial conditions, the Bessel function in Eq. 30 will involve at least 
some of the Hankel function of second kind, so that T\ (s) will grow 
exponentially 

for 

2./2 TJ(S) ~ e'YS 

2 
'( s /2. > > 1 . 

It follows from Eqs. 27 and 2.4 that y will have the same growth 
as TJ, while ~ will grow only when the increasing exponential in Eq. 
exceeds the Landau damping, i. e. 

2 y s /2 >as , 

These results can most conveniently be summarized in terms of three 
characteristic times: 

T = row /eE k , p e 

the time for the field to produce particle velocities of wp/k; 

tg = JT/wp = ~rn/eEek , 
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time at which the Hankel function begins its exponential growth 
ys 2 :: 1); 

t d :: 2 ma/ e Ee :: ' 2 (k a/w ) T , p 

time at which Eq. 32 is satisfied and also the time required for the field 
produce a relative drift velocity of order a. 

given k, it follows from Eq. 29 that the solution of Eq. 30 is valid 
t < T. Thue., there are three possibilities. 

(a) If the values of a and Ee are such that 

(33) 

kD :: wp/a is the Debye wave number), then the Hankel function 
starts at a time (t ) when its rate is less than the Landau damping. 

on, (11 t td) but stilf before t :: T, the relative drift velocity exceeds 
Ek begins an exponential growth which continues at least until time 

(b) If 

2 2 
or 1 < e E/mka < (kD/k) (34) 

even though the relative drift velocity exceeds a at time td' growth 
E is postponed until the later time (t ) when the Hankel function attains 
asymptotic character. This result is \t first surprising; in the case 
= 0 a drift velocity greater than a leads to growth, so that one would 

expec"t growth at a time of order td. However, the energy exchange 
particles and wave which constitutes the physical reason for growth 

wave 2- cannot occur in a time less than that required for a particle to 
one wavelength, and this time is just tg.* Hence we have the 

condition for growth in presence of an electric field: t must be 
_enough for the external field to produce a relative drift velocity greater 

the thermal speed and also to accelerate the particles through a distance 
least one wavelength. 

If 

tg > T or tD > T 

time for a particle to go a distance 1/k in virtue of its thermal 
alone is greater than tg when the inequality Eq. 34 holds. 
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that is, if 

2 z 
k > kD or e E/mka > (k0 /k) (35) 

then we can only conclude that no growth of Ek occurs before a time T. 
Whether it occurs subsequently can only be determined by dropping the 
restriction to small k or small t. 

In the opposite limit of large k or large t, we expect that an 
approximate solution should follow from setting the right-hand side of Eq. 28 
equal to zero. Noting Eq. 27 we then have 

2 a. y = 0 (36) 

whose general solution is y = (c 1 s + c 2 ) e -iys
2 

/ 2 where c 1 and c 2 are 
constants. Thus, y has no exponential growth and the Landau damping, 

e -as, prevails. The physical reason for the absence of growth is simply 
that at times greater than T the electric field has accelerated all particles 
to velocities greater than the phase velocity of plasma waves, wr/k, 
no particles to be trapped by the waves. We see that the genera 
characteristics are just those to be expected from consideration of the field 
free case, the only new features being the requirement that growing waves 
occur only if there is ti.tne to accelerate a particle through one wavelength, 
and that after long times (t >> T) waves of a given k stop growing and 
decay by Landau damping. It seems reasonable to expect a similar behavio 
in the case m f. M and also for other choices of f 0 , but we have not 
explicitly demonstrated this. 

Ill. A Quasi-Linear Approximation 

We now adopt a different point of view. Instead of assuming the 
fluctuations to have an amplitude small enough to permit complete 
linearization, we suppose that as. a consequence of Bunernan1s mechanism 
a kind of quasi-equilibrium is establiahed in which f 0 and F 0 are nearly 
time independent. This can come about only if the amplitudes of the 
fluctuations have increased to a point where the right-hand side of Eq. 3 
approximately balances the term containing Ee. In fact, we would require 
£0 and F 0 to have such shapes as to lead to little growth of the fk, while 
also demanding that the fk have a velocity dependence which enables the 
nonlinear term in Eq. 3 to cancel the Ee terrn. It is far from clear 
whether the equations have any seli-consiste:rit solution of this character. 
As a first step in studying this, however, we have examined the cons 
of assuming that 

(a) f
0 

is independent of time. 

(b) The ponlinear terms in Eq. 4 can be neglected, 

(random phase approximation). At worst, this can l:ie regarded as an 
approximation to the problem discussed in the previous section, valid over 
times short compared to that in which f

0 
changes appreciably 

t < < m J(dvvf )/eE o e 
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, we study the linear system 

a similar equation for Fk and with 

n e 8f 
::: _o_ E __.£ 

rn k av (3 7) 

(38) 

shall assume thll.t E is independent of time. The general solution of e 
(37) (obtained, for example, by straightforward application of the 

of characteristics) is then 

+ e -ik(vtH.t2 /2) .fk (v + X. t, O) 1 
T ::: t- t 1 

electron density is 

,, + fk (kt, O) e ikx.t2 /2 '\ 

X. = e E /m . e 

(39) 

(40) 

the bar denotes the Fourier transform, defined as in Eq. 10. Upon 
this and an analogous expression for ion density into Poisson's 

Eq. 5, we obtain again an integral equation for Ek (t), 

+ F 
0 

(k T, t 1 ) e -ikmX.T
2 

/ 21 ::: X (t) (41) 
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where 
• 

X(t) = (4rre/ik)[Fk(kt,O) e-ikx.t
2
m/lM 

-7k (kt, 0) eik>..t2 /2] 

depends on the initial conditions. 

(42) 

When f is independent of time, the integral Eq. 41 is of convolution 
type, and th~ solution by Laplace tra~sform is immediate. With 

J
oo 

iwt 
Ek (w} = 

0 

dt Ek (t) e 

and a similar definition for X (w) we have 

where r and R are transforms of the kernels of Eq. 41, 

J
oo . 2 

:: (-i/kz) ~ d0f (6) et(u6H.0 /Zk) 
du o 

0 

with 

u = w/k • 

R (w) is defined in an analogous fashion. In inverting Eq. 43, _ 

E (t) = dw e X (w) J
oo -iwt 

k _
00 

1 + w! [ R (w) + r (w~ 

the integral is to be carried out along a contour which passes above all of 
the singularities of the integrand. Aside from poles of X (w). which ae1Deirlu 

upon the particular initial conditions chosen, the polea of the integrand will 
occur at points where the denominator vanishes. 

D (w) = 1 + w~ [r (w) + R (wLJ = 0 . 
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47, which is just the dispersion relation for this system, has roots 
upper half plane, then ~ (t) will grow exponentially at large times, 
the oscillations will be unstable. 

To gain some familiarity with the dispersion Eq. 47, we investigate its 
rties for the particular cas.e of Maxwellian distributions for f 0 and F 0 • 

choose a frame in which the drift velocities are .± V and we assume both 
to have the same temperature, 

2 2 -(v-V) /a1 
f e = 0 

fia1 

l 2 -(v+V) /a2 2 2 e F = a2 = (m/M) a 1 0 
.fITaz 

(48) 

Fourier transform of £
0 

is 

(49) 

the function r required for the dispersion equation is 

r (w) = -i..1_Jco d0f (0)ei(u0H.02/2k) 
~du o 

0 

= 1 d 1 z(u -v) 
-~du a 1 !J.i ~ 

(50) 

u = w/k 

is the "plasma dispersion function 11 defined in Eq. 18. (The 
of the integral in Eq. 50 to the Z function requires just some 

of the square in the exponent.) The "dispersion Eq. 47 is then 

* 1-1-z = ~i 
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The diinensionless parameter Jz >../k a 
2 is Just the ratio of the 

increment produced by the field in a distance 1/k to the thermal velocity, 
In the limit >.. = 0, Eq. 51 reduces, as it should, to the dispersion 
given by Jackson2. For >.. I 0 but >../k ar < < 1 the properties are 
qualitatively similar to the zero field case. However, for X/kaf > > 1, 
che:i.racter is quite different. In particular, we find that growing waves 
for arbitrarily small values of the drift velocity V, and, in fact, even in 
the limit M/m ....., <X> where the ions are very heavy and do not participate 
in the oscillations! 

Consider the latter case, i.e., an electron plasma with a background 
of heavy positive ions to provide charge neutrality. We want to know 
whether the dispersion equation, which now simplifies to 

2 2 
k a 1 z• ( u) - a· --z--2 - -w µ jJ.a 

p 

has any roots with Imu > 0. The use of a Nyquist diagram, as described 
Jackson2, enables us to answer this without the necessity of evaluating 
Eq. 52 for complex u. Unfortunately, even if u is real, the argument 
Z 1 is complex because of tJ., and the separation of Z into real and 
imaginary parts is simple only when the argument is real, pure 
or proportional to {i. We therefore exploit the fact that in the large field 
limit, >../ka2>> 1, 1-LZ is nearly pure imaginary. Introducing the 

(we shall assume that both k and E are positive) we have e 

J 
. 2 2 

µ = - 4l)' /a + 1 

= 2-y/a J- i (1 + ia2/a l + ... ) 

2 2 If we neglect the a /'i term, then 

7 Z' ( ~) = - ;l{ x fz [•in x2 (~xj S [,/]- ~ 
+cos x'(fxT c [x2]- 1)] + i [1 + x Ji cos x2 (fxf s[x'] 
- x ~ ain xZUxi C [x2

]- ~]} x = Ty 

2 Jackso11 op. cit, p. 2. 
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re C and 5 are the Fresnel integrals 

x>O (56) 

small or intermediate values of x = (uhy). the representation Eq. 55 
good approximation for large y/a. However, in the asymptotic region 
< - 1) it is not correct; the real part of 1-12 causes a damping of the 

divergent, oscillatory character predicted by Eq. 15. To show this, 
use the large argument asymptotic form of Z, 

Z 1 ( ) _ [ 4 · ,r,; -x
2J + 1 + 3 • 1 + 5 , 3 . i + x - - 1 yrr x e 2 ~ . 2 . . •. 

x 2 x 6 

the term in brackets is to be included if and only if Im x < 0. 
the a 2 /v2 correction to "'- in Eq. 54 we then find 

2 
2 ~ 3 (~)2 ]11 +7L1+2 u + ... U. (57) 

ee that if - u/y is large compared to 1 but still small compared to 
then the first term of Eq. 57 dominates. It is just the asymptotic 

rm of Eq. 55. For - u/y large compared to y/a, however, the first 
rm becomes exponentially small (due to the fact that .,.2 is riot pure 

. aginary) and the second term (which is itself tending towards zero) 
ominates. The first term in the curly bracket of Eq. 57 is proportional, 
~agnitude, to -' 

2 2 2 .rrr 2 -a x /4y ..,.. x e 

hich has a maxi.mum at 
-:' 

x = {2 y/a , 

~maxi.mum amplitude being 

2 (y/a) ~2 rr/e . 

. 
2

We can now sketch the form of the real and imaginary parts of 
••. ~ Z' (u/µ.a) as functions of u (Fig. 1) and hence the form of the Nyquist 
ot, i.e., the map of the real u axis in the plane of .._-2 Z' (u/µa) (Fig. 2). 

we go from u = + oo towards u = - co along the real u axis 
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x 

Fig . I Real and imaginary parts of IL -Z Z 1 (u/ fl.a) as functions of x = u/ 2 -y 
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e opposite direction from that indicated by the arrows in Fig. 2). The 
ge pomf starts from the origin, moves outward in a gradual\'f widening, 

ckwise spiral until it reaches a radius of order (a/y) (2 rr/ e) 2 , then 
cklY spirals back into the origin. The dispersion Eq. 52 will have roots 

.the upper half plane (le~ding to growing waves) ii this spiral includes 
tJeast once) the point k a2/w~. This will happen ii 

> I z y,.._, a (kD k) (58) 

order for the large field approximation to be valid, we must simultaneously 
e y >>a. This, combined with Eq. 58, gives as a condition for 
tability 

cClndition which can always be satisfied, for nonvanishing E , at a . e 
!iciently large wavelength. 

(59) 

This is not a physically reasonable result, since it predicts that an 
ctron plasma with a Maxwellian distribution will have some exponentially 
V/ing waves no matter how small the applied electric field. When the 
s are assumed to have a finite rnass, it is not surprising that the same 
~ase manifests itself and one finds growing waves for an arbitrarily small 
a,tive drift velocity. The reason for this difficulty may be that the 
ginal hypothesis is inconsistent; there is no solution for which the random 
se approximation and the approximation of nearly constant £0 are both 

lid. At any rate, ii a solution of the indicated character does exist, then 
e(present results show that f 0 and F 0 must have forms very different 
In a Maxwellian distribution. 

As a final point, we recall the remark, made at the beginning of this 
fion, that the present analysis should describe the completely linear 
blem of Section II, at least during a time in which £0 does not change 
I'eciably. The results found here--instability for any external field--
agree with those of Section II only if we can show that the growth rate 

rnall compared to e EE/ma, the rate at which f 0 is changing. Such a 
monstration can, in fact, be given so that the results of the two sections 
e not inco:n'"5istent. 
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Conclusions 

On the basis of the linear analysis of Section II, we conclude that at 
least for the special distributions treated there, and probably for more 
general ones as well, the presence of an external electric field causes no 
significant changes in the stability character of the linearized plasma 
If the field is very strong, then it may produce a separation of electron 
ion mean velocities greater than the electron thermal speed (thus 
the field-free condition for growing waves) before it has carried a particle 
through one wavelength of the oscillations. In that case, growth is 
until the particles have gone a distance of order 1/k and thus bad chance 
to exchange energy with the plasma waves. 

From the results of Section III it appears that if a solution of the 
complete equations in which f 0 and F 0 are nearly constant in time 
it must involve either an f 0 and F 0 with non-Maxwellian shapes or else 
must be affected in an important way by the nonlinear terms in Eq. 4 
couple one mode to another. 
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INSTABILITIES DUE TO ANISOTROPIC 
VELOCITY DISTRIBUTIONS 

E. G. Harris* 
Oak Ridge National Laboratory 

Abstract 

If the velocity distributions of the electrons and ions of a 
plasma are sufficiently anisotropic there exist both loii.gitudinal 

PAPER 19 

and transverse unstable waves. These instabilities have been in-
vestigated using the Vlasov equations. Most of the work has been 
done on the longitudinal waves and with the assumption that the 
coupling between longitudinal and transverse modes could be neglected. 
Since most of the proposed thermonuclear machines create plasmas 
with anisotropic velocity distributions these instabilities may 
have serious consequences. 

Rather than write down all the equations involved in these derivations, I 
it will be more useful if I explain the equations on which they are based 

then briefly discuss a number of instabilities which arise from anisotropic 
These calculations are based on the following set of equations. 

equation without collision terms for each species of particle in 

'Of _, + v • 
3t 0 (1) 

the equations for the vector and scalar potentials 

1 cP"A 2___.. 41{ I. ;- 3 
c 2 ot 2 - V A = c e vfd v (2) 

1 ,,.2¢ 2 
/·. ~t2 - v ~ ( 3) 

onsultant from the University of Tennessee, Knoxville, Tennessee. 
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The summation in the above equations is over t~ various species of particle 
(electrons and ions in the usual case). ~and B are determined from A and\¢ 
in the usual way. There is also the Lorentz gage cond.ttion 

0 

which is not independent but is a consequence of Eqs. (1), (2), and (3). 

The usual assumptions of an infinite homogeneous plasma in a uniform 
magnetic field is made. The equations are linearized and then Fourier analy 
in both space and time. Equation (1) becomes a differential equation in vel 
space which can be solved. When f is substituted into Eqs. (2) and (3) a set 
of four homogeneous algebraic equations is obtained. The dispersion relation 
is obtained .by setting the determinant of the coefficients of these equation~ 
equal to zero. In the general case the elements of the determinant will be a; 
rather horrible mess of integrals over the zeroth order distribution functio 
I will not try to write them down. 

We are particularly interested in zeroth order distribution functions 
which lead to instabilities of the plasma; that is, cause the dispersion 
relation to have complex solutions for the frequency. Wt shall try to catal 
some of these. 

~ If the wave vector k is parallel to the magnetic field (which is taken 
be in the z direction) then the terms which couple ~ to Ax and Ay vanish arid 
the dispersion relation factors into three factors. Setting each factor eq 
to zero gives 

l ="l.w2 fr p 0 

and 

2 (4.1 + kv ) z 

k 2 2 cl f z I [ ~+ kv 
c + L P o G.:>+ kv z ± A>c + (cJ + kv + ~ )2 

z - c 

!quation (5) corresponds to longitudinal plasma osciilations along the lin:s 
B. In this case the magnetic field plays no part. Instabilities are predj_ 
by Eq. (5) whenever there is relative motion between electrons and ions1 or 
'When two streams of plasma pass through one another. These instabilities a 
rather well known. 

Equation (6) corresponds to transverse circularly polarized waves. Wll.e 
the polarization is right-handed or left-handed determines the sign that Pl'.'~ 
tJc· Bernstein and Dawson2 have discussed the instabilities predicted by E 
when a stream of eharged particles pass through a cold plasma. 

1. o. Billleman, Phys. Rev. Letters, 1, 8 (1958). 
2. I. Bernstein and J. Dawson, Papers Presented at the Controlled Thermo .. 

nuclear Con:L'erence, Washington;-Q. £•, 1958, TID-7558, 360 (1958). 
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An interesting instability has been predicted by Weibel . 3 Consider a 
tribution of the form 

f "-' 
0 

(7) 

has fourid that when az is sufficiently smaller than a..1... Eq. (6) :predicts 
tabilities. These instabilities occur even in the absence of an external 

gnetic field and probably should be called unstable light waves. 

Another interesting instability has been f'ound by Rosenbluth, 4 It involves 
I think is properly called a resonance between the frequency of a bydro-

etic wave and the cyclotron frequency. In order to see how it comes about 
t us consider Eq. (7) with a = O and plot a portion of the dispersion 
ation given by Eq. (7). Itzhas the appearance shown in Fig. 1. 

w 

k 

Fig. 1 

the origin the cJ vs. k curve has a slope equal to the Alfven velocity. 
':L. were zero the curve would approach Oci' the ion cyclotron frequency 

totically, but for finite aJ.. it behaves as shown. For small k there will 
, wo real frequencies but as k increases the two frequencies will approach one 
· her until they become equal and for larger values of k the roots become 
lex. Apparently as the frequency of the wave approaches the cyclotron 
uency it becomes possible for the ions to feed their kinetic energy into the 
motion. The wave we have been discussing is the one whose electric vector 

tes in the same direction that the ion rotates. The wave with the opposite 
shows a similar behavior in the neighborhood of the electron 

·•·. Fiiially we get to the work I have done on the problem. 5' 6 If we no longer """" --;,. e that k is parallel to B but allow it to have a perpendicular component, 
we find that the dispersion relation can no longer be factored. The 

.E~ S. Weibel> Phys. ~· Letters 2, 83 (1959) . 

. M. Rosenbluth, "Recent Theoretical Developments in Plasma Stability," 
· aper presented Nov. 1958 at the San Diego meeting of the Fluid Dynamics 
· ivision of the American Physical Society. 
E. G. Harris, Phys. Rev. Letters 2, 34 (1959). 
>E. G. Harris, UnStablePlasma Oscillations in a Magnetic Field, ORNL-2728 

,,{1959). 
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terms coupling the longitudinal and transverse waves are found to be of the 
of the ratio of the phase velocity of the wave to the velocity of light. I 
assumed this ratio to be sufficiently small that the coupling could be ilegL1ec1r.~~>+ 
The results which I shall quote are only valid when this is a good approxima-
tion. This approximation is equivalent to using only Poisson's equation 
than the complete set of Maxwell's equations and has been made by a number 
WTiters. In this approximation the dispersion relation becomes 

1 L 
(() + k v + n ~ ) z z c 

~(~ J 
('-> + k v + n~ ) z z c 

where Jn is a Bessel function of order n. 

Suppose we have distribution functions of the form of Eq. (7) with az = o. 
Then the integrals in Eq~ (8) can be carried out and the dispersion relation 
written in the form 1 == Y(O) where Y(~) has the appearance shown in Fig. 2. 

Y(Cl) has singularities at multiples of the ion and electron cyclotron 
frequencies. 'lhere Will be co~lex roots unless the horizontal line labeled 1 
intersects all the loops of Y(c..)) (that is, has two intersections between each 

Y(w) 

w 

3w. 
Cl 

Fig. 2 
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of multiples of .0ci in Fig. 2). The criterion for instability can be 
approximately 

6)2 {,)2 
pe 7 ci 

2 4ttMc 

(9) 

(10) 

a magnetic field of about io4 gauss this gives N>- 107 particles/cm37 which 
a.n extremely low density. Of course, in ma.king this calculation I assumed no 

in velocities along the field. Any such spreading will tend to damp out 
oscillations. 

to quote some experimental verification of the existence 
instabilities. Tb.ere are some experiments by Alf'ven.et al.7 on 

electron beams which seem to show these instabilities.~In these 
the ions play no part and the instability criterion becomes 

r;> 2 2 6Y or N-:7 B /41tmc • Indeed there does seem to be at least order of ce 
agreement with this criterion, but the dimensions of the beam was 

so no carefui quantitative comparison is possible. 

Northrop: Any discussion? 

On this last point you published a letter in Physical Review a 
so ago in which I understood that you elaborated on the instabilities 

with the last condition. 

Dr. Harris: That is true. In that calculation I didn't take into account 
ions. So this is the condition. 

Do I understand you correctly then, you would interpret that 
a..re really two cones, one associated with the ions and then much farther 

one associated with the electrons? 

Harl'o'is: That is true. If you get way out here where the electron 
frequencies appear then you get other instabilities occurring. 

Post: I mean they might even be separated experimentally if they were 
by this criterion you propose. 

Dr• Harris: Well, if you go to this one in density then, of course, you 
in the uns·table region here. You would have to have something suppressing 

oscillations. 

Dr. Post: Tb.at is a weak limit. 

Dr. Harris: Yes, every machine would be terribly unstable. 

Alf'ven, Lindberg, Malm1'ors, Wallmark, and Astrom, Kgl. Tek. Hogskol. 
Handl. No. 22 (1948). 
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Dr. Auer: I disagree with Harris. If you look at the sort df thing he 
wrote down you will find that the velocity of light cancels out in a couple of 
terms during the transverse and longitudinal and what appears is the ratio of 
the phase velocity to, let's say, the thermal velocity supplementing the average 
velocity. Furthermore, if you are going to make some sort of coupling, then I 
believe the only Wa.y you can try to make this deep coupling make sense is if 
you assume that your frequencies are large compared, say, to the plasma 
frequency or the cyclotron frequency, and one place where you certainly must 
make a big coupling is right around the ion cyclotron frequency. 

Dr. Harris: Perhaps I didn't look closely enough for the cancellation 
you spoke of. 

Dr. Rosenbluth: Do you have a comment on Auer's question? 

Dr. Harris: As I said, I didn't find it but perhaps I didn't look close 
enough. 

Dr. Bernstein: I disagree with Auer, only to look at the maximum equation 
in the term Fe sub EDT. 

Dr. Auer: What I meant is the Boltzmann--

Dr. Bernstein: 'l'his has nothing to do with the Boltzmann equation. It 
has only to do with the Maxwell equation~ Under what circumstances can you 
write the terms? 

Dr. Auer: There is another point. The question is when can you disregard 
the ~ x ·!f term? 

Dr. Bernstein: I think that is entirely separate. 

Dr. Auer: How so? 

Dr. Bernstein: Because the distinction between longitudinal and transverse 
is contingent only on whether or not the velocity is zero. 

Dr. Auer: Yes, but it so happens that the v x B term in the equation 
brings in an additional coupling and you find that you cannot, for instance, in 
the region that Harris spoke of, make the decoupling. The ix B terms have not 
been treated properly in the equation for the distribution. 

Dr. Harris: They have been treated properly. The dispersion relation I 
get down here is exact. The only question is whether I have done the right 
thing in getting these terms, and I think the only thing to do is to multiply 
out the determinant and see if there is the cancellation you speak of. 

Dr. Rosenbluth: I have just one comment on this resonance instability 
that you spoke of. It is interesting to notice that this instability occurs 
for any anisotropic distribution, even if it is just a little tiny bit 
Of course, the rate becomes extremely small. Even if you have two '.iifferent 
temperatures in the perpendicular direction, even if you make them arbitrarily 
close together you still get the instability. It becomes exceedingly small but 
nonetheless it does exist for any anisotropic conditions. Then I wanted to 
ask you, is this condition which you wrote down necessary and sufficient? 

Dr. Harris: This is a sufficient condition and actually the factor in 
here is of this order of magnitude. 

Dr. Rosenbluth: You assume both distributions of this form? 
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Dr. Harris: That is true, yes • 

. Dr. Allis: Combining this condition with the condition that the frequency 
less than cyclotron frequency puts the problem in the upper righthand 

corner of my diagram. In one corner the wave surface is this way. 'Il:lere are 
directions along here of zero velocity and those are the only directions that 
E is parallel to ·k. The things are properly coupled here and the B is ta.ken 
into account. The velocity of the wave is going to zero and that is why they 

parallel. So I think it is entirely consistent. 

Chairman Northrop: Any more questions? 
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THE BREAKING OF FINITE AMPLITUDE PLASMA OSCILLATIONS 

John Dawson 
Project Matterhorn, Princeton University, Princeton, N. J. 

Abstract 

Large anlplitude, plane, electrostatic oscillations of a 
cold plasma were followed num.erically. The amplitude was 
taken to be just slightly larger than that at which the waves 
begin to break. It was found that the order wave motion was 
largely converted to individual particle motions during the 
first few oscillations. About 50% of the wave energy was 
lost in two oscillations. A few particles were found to be 
accelerated to very high energies (of the order of ten times 
the average energy). 

If one goes to a Lagrangian coordinate system, it turns out that there 
are certain finite amplitude longitudinal electron oscillations of a cold 
plasma which can be analyzed exactly. For amplitudes greater than a 
certain critical amplitude, the exact analysis breaks down and the waves 
exhibit a breaking phenomenon roughly analagous to that of ocean waves. 
In this paper I want to describe some m.unerical calculations which I 
have carried out on this breaking process. 

Figure 1 illustrates how the analysis goes. Here we are considering 
plane plasma oscillations. The plasma is taken to be infinite in extent. 
The ions are assum.ed to constitute a uniform, fixed neutralizing back-
ground. Let the oscillations be in the x direction, and let all particles 
in a given x plane execute identical motions. Suppose that the equilib-
rium position of a plane is x 0 and let its displacement be X(x0 ). In 
moving the distance X(x0 ) the plane passes over an amount of positive 
charge equal to 

e n 0 X(x ) 
0 

per wiit area. Here n 0 is the equilibrium num.ber density of electrons. 
Now, if the ordering of the electrons is maint4ined then all the electrons 
which were on the right of the x 0 plane remain on its right and all those 
which were originally on its left remain on its left. In the equilibrium. 
position there is no net charge on either side of a plane so that now there 
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must be a positive charge 

e n X(x ) 
0 0 

per unit area on one side and a negative charge 

- en X(x ) 
0 0 

on the other side of the plane considered. We assw:ne that no charges 
enter or leave the system at plus and minus infinity. 

From Gauss' theorem the electric field felt by the plane is 

E = 4rr e n 0 X(x0 ) 
a 

and its equation of motion is simply 

x = 
2 - 411' e n 0 

m 
2 x = -w x p 

(1) 

(2) 

This is the equation of motion for a simple harmonic oscillator. Each 
plane s:Unply oscillates about its equilibrium position independent of what 
the other electrons are doing provided the ordering of the electrons is 
maintained. 

The most general solution to this equation is given by 

= x_ {x ) sin w t + x 2 {x ) cos w t 
-~ 0 p 0 p 

An interesting special example is obtained by setting 

A sin K x 
0 

(3) 

(4) 

We may find the electric field as a function of position by making use of 
equation (1) and the fact· that the x 0 plane is at the position 

x = x + X(x ) 
. 0 0 

(5) 

Plots of E/ Em as a function of x for t = O, for various values of 
A are given in figure 2. Em is the maximum value of E. 

For small amplitude waves you get simply a sine wave. As the 
amplitude gets larger, the maximum and minimum move together. For 
very large amplitude waves, you find double valued curves. This is, of 
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course, impossible. The derivation has broken down and the ordering 
of the electrons is not maintained. It appears that this crossing process 
will create a chaotic situation. which will rapidly destroy the wave. 

In order to follow the crossing in detail I coded the problem for the 
Matterhorn 650. The electrons were divided into a discreet munber of 
identical charge sheets. The ions were still taken to constitute a uniform 
fixed background. The equilibrium situation for this model has the sheets 
equally distributed in x, that is the sheets are equally spaced. For low 
amplitude oscillations the sheets oscillate about their equilibrium. position 
with the plasma frequency. For large amplitudes the sheets cross each 
other and you get the breaking of the oscillations. To find the electric 
field felt by a sheet, one needs to compute the net charge on each side of 
it, (nUinber of sheets plus background charge) and make use of Gauss' 
theorem. 

The calculations were carried out for an initial situation in which 
the velocities of the sheets were a sinusoidal function of their equilibrium. 

and for which the amplitude was just slightly larger than that 
required to give breaking. I should mention that Buneman sent us a pre-
print of a paper in which he gives the results of a very similar calculation. 
He followed the breaking of the unstable oscillations produced by a stream 
of fast electrons passing through a background of heavy, but movable ions. 

The calculations were carried out for 10, 30, and 45 particles 
per half wavelength. Because of the symmetry of the problem, one need 
only follow the motion of a half wavelength. One must put rigid reflec-
ting walls at the ends since every time a particle leaves the half wave-

region a particle enters with the negative velocity. Further, when 
sheets cross each other they may be thought of simply as interchan-
equilibrium. positions. This fact was made use of in the calculations. 

Figure 3 shows the electric::: field felt by 30 and 45 particles as 
function of their instantaneous equilibrium position after just about one 

oscillation. The dashed line is the curve for 30 particles and the 
curve is that for 45. Up to particle 25, for the 45 particle case, the 

smooth and from there on it is ragged. This is due to the particles 
from the wall which is at position 46 or if one prefers from the 
entering the region from the adjoining half wavelengths. The 
wave is rather ragged and agreement between 30 and 45 particles 

only rough. This indicates that the results might be changed somewhat 
one uses more sheets. Nevertheless, quantitative• results are probably 

too bad:'* 

Figure 4 shows the electric field for 45 particles as a function of 
equilibriwn position for a time of 17. 4 radians or about 2, 75 
The dashed curve shows the electric field that would exist if 

wave had not broken. As can be seen, the amplitude of the wave has 
down by a considerable factor. 

Figure 5 shows the velocity of the particles after 17.4 radians. 
curve is much more ragged than the one for the electric field and this 

due to the fact that the plasma tends to smooth out the density fluctua-
of particles, but has no tendency to smooth out the velocity fluctua-

Most of the velocities are fairly low as they should be since this 
at a maximwn of the electric field. However, a few particles have large 

and these contain a large portion of the initial wave energy. 

Further calculations with 90 sheets per half wavelength carried out 
since this talk was presented bear this out. 
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It is clear from Figures 3, 4, and 5 that the ordered wave motion 
is being randomized. To get an idea of the extent of this, the 
and velocity were Fourier analyzed in terms of the equilibriwn position. 
Figure 6 shows the absolute arn.plitudes of the various Fourier modes, 
The solid curve is the amplitude for the velocity analysis while the broken 
curve is 10 times the amplitude for the displacement analysis. The hyper-
bolic curve is the maxinlwn amplitude a mode could have without breaking 
if the other modes were not excited. The first point on the displacement 
analysis curve has been left off since it would be at 59. However, one 
times the displacement analysis curve would be at 5. 9 which is not so 
larger than the amplitudes of the velocity analysis. 

This figure shows that the high harmonics are roughly equally ex-
cited and that there is no tendency to feed energy into any particular mode. 
The velocity amplitudes are roughly 10 times the displacement amplitudes 
which again shows the tendency toward smoo.th density curves, but not for 
smooth velocity curves. This figure also shows that the modes higher 
than the seventh or eighth will break on every oscillation. 

Figure 7 shows the ratio of the energy is the fundamental to its 
initial value as a function of the time in plasma oscillation periods. The 
solid curve is for the calculations described above. Initially, it is one. 
At one plasma period it is about 98 percent; at 1. 5 periods it is about 96 
percent. It then starts down very fast, going down to about 65 percent 
after 2 periods. It then raises slightly, then drops again and finally ends 
up at about 40 percent after 3 periods. 

During the first few periods the oscillation is picking up a little 
random motion from the breaking at the ends. Once the wave has devel-
oped a little disorder, the damping seems to go very fast. This indicates 
that a little random motion or temperature would greatly influence the 
damping rate. I, therefore, started the wave out with a little random 
motion. The random energy was about 10 percent of the wave energy. 
The wave velocity was about 10 times faster than the root mean square 
of the random velocities and was 3. 5 times larger than the maximwn ran-
dom velocity of any particles. Thus, there should have been no Landau 
Damping in the usual sense. The dashed curve in Figure 7 gives the 
ratio of energy in the first harmonic to its value at time zeroo As can 
be seen, it damps very fast and in about one plasma period, it is down 
to only 11 percent of its initial energy. While 45 particles are not very 
many, this calculation gives a clear indication that thermal motions have 
a profound effect on the breaking process, greatly enhancing the speed 
of dissipation. 

Chairman Northrop: 11Any questions? 11 

Dr. Dreicer: "Did you notice any periodic nature of the solutions after 
breaking occurred?" 

Dr. Dawson: "No." 

Dr. Rosenbluth: "If you had started with a two-stream instability which 
had had a reasonable sort of temperature spread, you 
would have a sort of very rapid dissipation before coming 
to the catastrophic breaking. " 

Dr. Dawson: "Yes, I think that is probably true. At least these calcu-
lations indicate that temperature has a big influence on the 
damping speed and you should get damping before you get 
to the breaking aniplitude." 
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Dr. Tuck: "I take it that you have not just turned the 650 on and let it 
run just to see what happens." 

Dr. Dawson: ''No, this calculation is rather slow. With 45 particles, it 
takes three hours to do one oscillation, so you have to let it 
run a long time. 11 

Dr. Tuck: 11Kruskal will tell you that it will return to the starting condi-
tions. 11 

Dr. Dawson: 111 h.ave made some estimates of that time and I fin~ that it 
will. return to the starting conditions after about 10 5 years 
with a plasma frequency of 1011. It would take the machine 
about 1660 years to get there which is quite a while. 

Dr. Tuck: 11 ln a real gas?" 

Dr. Dawson: "No, that was for 45 particles." 

Dr. Tuck: "Will 10, 000 oscillations with 32 particles?" 

Dr. Dawson: "Well, 10, 000 oscillations is about 30, 000 hours of machine 
time. 11 

Chairman Northrop: 11 Were there not some calculations by ·Ulanl several 
years ago, at Los Alamos on the time it takes to 
thermallze? The results seem to be that it returned 
faster than you would have expected, so maybe, it 
would be shorter than 10 to the 30th years. " 

Dr. Dawson: "The breaking seems to be more catastrophic than the 
processes to be considered. 11 

Dr. Longmire: "That is right, there was nothing like breaking in the 
Ulan'\ problem. There was nothing like losing order; 
thus you really have lost something." 

Dr. Rosenbluth: "Did you see whether the particles were going to any-
thing like a Gaussian distribution?'' 

Dr. Dawson: 11 There were always a nmnber of particles at very high 
energies which sort of ride the wave; so, the distribution 
would have a much larger tail than a Gaussian." 

Dr. Rosenbluth: "They, in themselves, are unstable." 

Dr. Dawson: 11Yes, they would give up their energy after a while. 11 
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PAPER 21 

EXCITATION OF INSTABILITIES BY RUN-AWAY ELECTRONS 

H. Dreicer and R. Mjolsness 
Los Alamos Scienti£ic Laboratory 

Abstract 

Tb.is paper deals with a fully ionized gas situated in an externally applied 
field.E, and investigates its stability to electrostatic disturbances. 

linearized Boltzmann equation is solved for the disperion relation between 
~and real k. Central to this work is the specification of the equili-

electron velocity distribution. In the weak field regime (E « Ec) this 
is obtained by solving the Boltzmann equation in the run-away 

of velocity space and joining the result to a solution obtained earlier 
Dreicer, "The Theory of Run-Away Electrons, " 10th Annual Gaseous Electronics 

1957, Cambridge, Massachusetts) for the low velocity body region 
collisions dominate. In the run-away region the distribution develops a 

in the neighborhood of a moving front, a.head of which there are very 
particles, and behind which the distribution decays exponentially. This 

maximum gives rise to the instabilities we have found. 

In the strong field limit (E >> Ee) we have turned our attention to the 
of instability which develops from a non-steady state velocity distribu-

The problem is being handled numerically and will be reported if sufficient 
are available at the time of the meeting. 
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STABILITY OF HELICALLY INVARIANT FIELDS 

ON THE PARTICLE PICTURE 

Russell Kulsrud 
Project Matterhorn, Princeton University, Princeton, N. J. 

Abstract 

The stability of a system with helically invariant 
fields has been recalculated using the energy principle based 
on particle motions developed by Kruskal and Oberman, and 
also by Rosenbluth and Rostoker. It is found that in the case 
of isotropic pressure there is no change from the results 
previously calculated from the hydromagnetic fluid equations. 
In the case of anisotropic pressure the results are roughly 
the same unless pi is much greater than p 11 • In this limit 
the "mirror-type" instability of Newcomb is found. 

The stability of helically invariant fields, which are the proposed 
stabilizing fields for the stellarator, have been calculated 1 on the hydro-
magnetic fluid picture using the energy principle of Bernstein, Frieman, 
Kruskal, and Kulsrud2. Since this calculation was carried out, two other 
energy principles have been developed using the particle description in 
the limit of small particle-gyration radius by Kruskal and Oberman3, and 
by Rosenbluth and Rostoker. 4 It seemed advisable to carry out the 
invariant field calculation again on this particle picture, to see if the crit-
ical conditions for stability differed from those obtained based on the hydro 
magnetic picture. 

The stabilizing fields can be descriped basically as follows: 
Imagine the stellarator stretched out into a cylinder and wires wrapped 
helically about the cylindrical tube carrying currents in alternate dir 

l, J. Johnson, C. Oberman, R. Kulsrud, and E. Frieman, Phys. Fluids 
281, 1958. 

2. I. Bernstein, E. Frieman, M. Kruskal, and R. Kulsrud, Proc. Roy. 
Soc. 244, 17, 1958. 

3, M. Kruskal and C. Oberman, Phys, Fluids 1, 275, 1958. 

4. M. Rosenbluth and N. Rostoker, Phys. Fluids 2, 23, 1959. 
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addition to the main field, B 0 , parallel to the cylinder, a small field, 
' will be produced which is proportional to sin (.ta - k z) where k 
the wave number of the field in the z-direction and the number of hel-

wires is 21. • This field produces a rotational transform which depends 
It thus has a sheer and is expected to stabilize the interchange 

The magnetic surfaces of these fields are given by 

r = R [ 1 + O cos (.t 0 - k z)] (1) 

is small and characterizes the amplitude of the superimposed 
invariant fields. 

The calculation was made for a very small value of o and also a 
small pressure. The pressure is expressed in terms of the dimension-

s number f3 , the ratio of the plasma pressure to the magnetic pressure. 
hydromagnetic calculation it was found that the system was unstable 

exceeded O 2 • 

There were three reasons for repeating the calculation. One reason 
the particle picture was more appropriate. The gyration radius is 

small com pared to any distance characteristic of the equilibrium. A 
reason was that in the original calculation an anomaly appeared at 

the radius where one would expect an interchange to occur; namely, 
radius at which the rotational transform had a rational value. If f3 

exceeded o 2 (the critical value) the system was unstable but only 
that were localized to a very small region about this radius 

order of a gyration radius. Either a finite gyration radius theory is 
ssary to describe this situation, or it is an anomaly due to the hydro-

picture, which would disappear in the particle picture. The third 
for repeating the calculation was to treat cases with anisotropic 

The hydromagnetic picture assumed isotropic pressure. 

For an isotropic pressure distribution the results from the particle 
are identical with those from the hydromagnetic fluid picture. We 
knew on the particle picture the system must be more stable. 

The anomaly still appears, so that the finite gyration radius is really 
Thus to do a completely correct stability analysis of these types 

magnetic systems, a finite-gyration-radius theory must be developed • 
. , 

The results for the case of anisotropic pressure depend on 73 the 
of the average of p 11 and P.1. to the magnetic pressure. This is a 
surprising because there is more energy connected with P..i. than with 
Also a new moment 0 appears defined as 

e = m 
4 s d3v (2) 

a slight modification of the results for the isotropic case. 
the critical 73 is 

{3c = 
2 T h 2 R 2 

O .ln (1 + 24 
( 3) 
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where I have assumed 6 is proportional to the average pressure and 

0 =- T 
Prr + P.L 

2 {4) 

In this case one finds th~ if p.J. is very large compared to p11 , 

9 and T are very large, and f3c is very small. This is the situation 
where the particles have mo st of their motion perpendicular to the -fields. 
If a perturbation producing a slight weakening in the field is made, the 
particles are trapped in that region by the "mirror-effect" and tend to 
enhance the instability. If p11 is large compared to p.1. (which is the 
E_ase if runaways are contributing to the pres sure) T is very small and 
f3c := O 2 • 

However, {3 is related to the average pressure rather than the 
energy. If one computes the total plasma energy contained by the 
field, the isotropic pressure case seems to be the case of maximum 
containment. 
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A VARIATIONAL PRINCIPLE FOR EQUILIBRIA 

FROM THE PARTICLE POINT OF VIEW 

Russel Kulsrud 

PAPER 23 

Project Matterhorn, Princeton University, Princeton, N. J. 

Abstract 

The equilibrium equations for a plasma from the 
particle point of view are written down in the small m/ e 
limit according to Chew, Goldberger, and Low. These 
are discussed in the case of a toroidal geometry with 
magnetic surfaces. The Bolt:zman function f depends 
only on the energy, the magnetic moment, and the mag-
netic surface. A variational principle equivalent to the 
full system of self-consistent equations is derived under 
this constraint in f. It is found to be necessary to in-
troduce one more constraint on the particles (besides the 
constants of the motion for the particle, the magnetic 
moment, and the magnetic surface}. This is a general-
ization of the longitudinal invariant. 

·To determine a hydromagnetic equilibrium properly, it is in 
necessary to solve the Boltzman equation together with Max-

s equations in a self-consistent mallller. However, it is often 
sable to neglect collisions entirely and to assume the particle-

radius is very small. In this limit the equations of motion 
a plasma have been developed by Chew, Goldberger, and Low. 1 

self-consistent system can be shown to be equivalent to a vari-
"-••,uiJ•cu principle in toroidal geometries. This variational principle 

give a rough idea of what types of equilibrium solutions are 
sib1e. 

The self-consistent equations for an equilibria with no mass 
are as follows: f the Boltzman distribution ftmction depends 

on position r, on the parallel velocity q and on the magnitude 
perpendiclliar velocity I VJ. [ • Expressed in terms of .!. the 

moment JJ = VJ.. 2/ 2 f3 (where f3 is the magnitude of the mag-

G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc., 
236, 112,( 1956). 
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netic field) and the energy vf3 + q2/ 2 + e/m qi (where rp is the 
electrostatic potential), f is given by 

B • \Jf = 0 

There are two such equations, one for the electron Boltzman function 
and one for the ions. The remaining equations (Maxwell's equations) 
may be written in the form: 

n. = n 
1 e 

(\/xB)xB = E \J· P 

(2) 

\JxE = 0 (5) 

B·E = E B • ( \J • P)/ m 
E ne 

m 

where the summations are over the two types of particles, n is the par-
ticle density, and P is the stress tensor. From equation one it follows 
that the magnetic field must lie on magnetic surfaces which we will as 
form a set of nested toroids, and will label by 1/1 the flux they contain. 
Therefore, f is a constant on a magnetic surface and we have 

f = f(€, lJ, 1/1) 

It should be noted from equation (6) that Eis a first order quantity but 
it enters in the Boltzman equation (!)---through its electrostatic potential 
rp. 

In order to construct the variational principle, it is neces 
define a quantity µ analagous to the longitudinal invariant. For any 
B which has magnetic surfaces and for any v and. E we set 

µ(v, e:, 1/1) = J 
where the integration .is performed over the magnetic surface ljl. 

The equilibria are just those configurations which make the 
energy W stationary subject to the following constraints: f = F(V, µ, 1/1) 

2. M. D. Kruskal and R. M. Kulsrud, Phys. Fluids, 1, 265, (1958). 
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where F is prescribed for the electrons and the ions. B has a set 
of magnetic surfaces which are nested toroids whose rotational trans-
form is a prescribed function of the flux l/; • E :::: "\! cp where cp is any 
function. F must be prescribed to make the total charge inside any 
magnetic surface zero. The energy W is the sum of the magnetic energy 
and the kinetic energy of the particles. 

From the existence of this variational principle, it seems reason-
able to assume that one may find toroidal equilibria for any prescription 
of the Boltzman functions of the type f :::: F (v, µ, t/I} and of the rota-
tional transform as a function of tJ;. In some sense this prescription 
would also characterize the possible types of equilibria. 

The constraints employed in the variational principle are just 
those which would be conserved if the magnetic surfaces changed extreme-
ly slowly in time. Thlf is in accordance with the thought experiment of 
Kruskal and Kulsrud. The analogue of the longitudinal invariant, µ, 
given by equation (8), is also expected to be conserved in time. Its inte-
grand is only defined at those points where q < 0 which is taken as the 
region of integration. If q> 0 everywhere (particles untrapped) or if 
q < 0 somewhere (particles trapped} one can show µis an adiabatic invar-
iant. In the situation where (in changing B) one passes from the case of 
a trapped to an untrapped particle, it seems likely that µ is conserved. 

2.. M. D. Kruskal and R. M. Kulsrud, Phys Fluids, l, 265, (1958). 
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ON THE STABILITY OF A HOMOGENEOUS PLASMA 
WITH NON-ISOTROPIC PRESSURE 

R. Ltist* 
AEC Computing and Applied Mathematics Center 

Institute of Mathematical Sciences 
New York University 

Abstract 

The stability of a homogeneous plasma in a homo-
geneous magnetic field with non-isotropic pressure is 
investigated by applying the macroscopic plasma equa-
tions. It is found that the plasma is unstable if 
the pressure along the magnetic lines of force is too 
large compared to the pressure perpendicular to the 
magnetic field; it is also unstable if the perpendi-
cular pressure is too large compared to the parallel 
pressure. 

In the following the propagation of waves in a homogeneous 
plasma with non-isotropic pressure is investigated. This pro-
blem is also of interest for the stability of such a plasma. 
The stability of a plasma with non-isotropic pressure has been 
studied by Rosenbluthl by applying the particle picture and by 
Chandrasekhar, Kaufmann and Watson2 for a pinch effect conf'i-
guration starting from the Boltzmann equation. 

The macroscopic equations as given by Chew, Goldberger and 
Low3 and by Schl~ter4 will be applied, neglecting the heat-flow 
terms i 

1. 
2. 

3. 

4. 

= - div 1P + 1 "f x ff> c (1) 

M. Rosenbluth, unpublished. 
s. Chandrasekhar, A.N. Kaufmann and K.M. Watson, Proc. Roy. 
Soc. Lond. A 245, 435 (1958). 
o.F. Chew~ M.L. Goldberger and F.E. Low, Proc. Roy. Soc. 
Land. A c36, 112 (1956). 
K. Hain, R. Ll\st and A. Schl\\ter, Z. f. Na turf. 12a, 

*On leave of absence from the Max Planck Institut fUr 
Astrophysik, Manchen. 
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.1.£ at = - div (p 7) (2) 

§.E~ = -2pJ. div ? + 12 p.4 ltclt grad) ':if" (3a) dt B 

£,£., = -p,. div 7 - 2 
2p11 ~ (if grad) 7 (3b) dt B 

;) 'l = curl cr){m (4) TI 

!:ill '":> 
c J = curl g (5) 

div It= 0 (6) 

Here 7 is the macroscopic velocity, p the density, it the 
magnetic field, ? the electric current density, P.1. and p 11 the 
pressure components perpendicular and parallel to the magnetic 
field respectively and 1P the pressure tensor with the elements 
pik given by 

= • (7) 

Assuming a homogeneous plasma and a homogeneous magnetic 
field and linearizing the above equations, one ca~finally 
derive the following equation for the amplitude ~ of the 
velocity: 

[c.>2 p - ~2 (if' i{>) ( P,, - p" ) - 4n: ('.if 'if"") 2 ] 'ii_ (8) 

- it [2p.L (Vj_ ifJ-B
1
2 P.1. (lt~)(ITTC)+ 4nB2 <7i11-"'frnCB if)(~7i>] 

+If (1
2 p.1. (g-it)+ ~(P.1. -4P,, )(if' if°)(if7i_)+ 4n(if'if>)(if°'f1 }] = O. 

,, B B 

Here w is the .frequency of the wave with the wave vector it. 
From this equation one gets the propagation velocity V = 'i as 
a function of direction .for the different kinds of waveso 

a) P7opagation E.§:rallel to th~ magnetic .field. 

In this case there exists longitudinal and transverse modes 
which are not coupled. The propagation of the longitudinal mode 
is given by 

v2 = 3 ElL 
p (9) 

This is the propagation velocity of a sound wave with one degree 
of freedom ( y = 3; t; ratio of specific heats). The velocity o.f 
the transverse mode is given by 

2 
v2 = PJ - Pu +L 1L (lO) 

P 4n P 
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In this case the Alfven-velocity is increased or decreased if 
the pressure component parallel to the magnetic field is smaller 
or larger, respectively, than the perpendicular component. If 
the parallel component is too large, the propagation velocity 
becomes imaginary. This is usually regarded as meaning that the 
plasma will be unstable. The same condition forcinstability has 
been derived in other ways by Rosenbluth~ Parker~, as well as by 
Chandrasekhar, Kaufmann and Watson~ 

b) Propagation perpendicular to the magnetic fiel~. 

In this case only a 

v2 = 
longitudinal wave 

2 
with the velocity 

2 P.., + .L .!L 
p 4n: p (11) 

can propagate. This corresponds to a gas with two degrees of 
freedom ( T = 2) • For this direction the velocity is always 
real. 

c) Propagation oblique to !he magnetic field. 

In this general case there exist three dif'ferent m_g,9es. 
One is a pure transverse mode (v1 is perpendicular to ~ and 
it) with the velocity 

v2 = 
2 1 B ]- 2 _Q. + 41t p cos v· (12) 

where .,,. is the angle between the direction of propagation and 
the magnetic field. The two other modes (v1 is in the plane of 
if and 'ir) are neither pure transverse nor pure longitudinalo 
v2 is given by a quadratic equation= 

v4 + ( .&_ (cos2J_ 2) - 2 EL_ cos2,,. _L B2 ] v2 + .l.. Pu B2 
P p 4n p 4n p2 

- <t- )2 (l-cos2J.)cos 2J+ 3 P(l.P* (2 - cos 21'-)cos 2,,. (13) 

- 3 (~ 1' )
2 cos 21'i = o. 

One can show that all roots of this equation are real; there-
fore overstability can not occur. Furthermore, there exists at 
least one root with v2 ~ o. But if the pressure component per-
penaicular to the magnetic field is too large compared to the 
parallel pressure, one root will be negative. Again this is 
usually regarded as meaning that the plasma will be unstable. 
In this case perturbations propagating nearly perpendicular to 
the magnetic field cause the instabilities. 

Introducing the dimensionless quantities 

= and {3 = (14a, b) 

5. E.N. Parker, Phys. Rev. 109, 1874 (1958). 
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the limits for stability are given by 

(32 
J(l+2~) < a < ~ + 1 ( 1.5) 

The inequality on the right-hand side is the condition that the 
parallel component of the pressure not be too largeo The left-
hand side gives the condition that the perw:ndicular component of 
the pressure not be too large compared to the parallel component. 
This condition is a weaker condition than the one derived by 
Rosenbluth. 

Dr. Blank and Dr. Grad pointed out later to me that .for the 
above condition of instability the character of the differential 
equations changes from hyperbolic to elliptic. In this case the 
initial value problem is no longer wall posed. The interpreta-
tion as instabilities is not obvious and seems to be difficult. 
This important question has to be investigated further. I would 
like to thank Dr. Blank and Dr. Grad for several discussions 
about this problem. 

·-~/ 
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PRESSURE BALANCE AND STABILITY CRITERIA IN THE 
MIRROR MACHINE* 

R.F. Post 
Lawrence Radiation- Laboratory, University of California 

Livermore, California 

ABSTRACT 

For some special cases where the plasma energy density 
is relatively small compared to the magnetic energy density, 
solutions to the tensor magnetostatic pressure-balance equation 
have been constructed for the mirror machine. These solutions 
can be made approximately to conform to previously derived 
diffusion equilibrium solutions. The solutions thus obtained 
can be subjected to various existing stability criteria, in order 
to derive critical relative plasma pressure values. These 
critical f3 values are generally of order 0 .25, and thus are 
probably high enough to lie outside of the range of validity of 
the low 13 solutions for which they were calculated. 

Some time ago I worked out a simple special solution to the pressure 
balance equations in the mirror machine just mostly to satisfy myself that 
such things existed and are not a figment of the imagination. I did not carry 
it beyond a simple special solution, since I found one that approximately 
satisfied the diffusion boundary conditions. It is now of some interest to 
revive this solution and compare_ it with the requirements of some recent 
stability criteria. 

The equation we are to solve for the magnetostatic pressure equili-
brium is 

= ~ 1x:B c 

( 1) 

*This paper may also be identified as Report UCRL-5524. 
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Fig. 1. Unit Vector Diagram. 

e a set of coo;:_dinates with the unit vector ~ along the magnetic lines 
the unit vector p perpendicular to the lines as shown in Fig. I . We 

down the equations for pressure balance parallel to the magnetic 
and pressure balance perpendicular to the magnetic lines just by 

Eq. 1. Of co'ase, in the parallel direction this side is zero. For 
sure balance in n direction: 

lv·IPI = o, n 

pressure balance .1 to B: 

I~. IP I 

inserting 

V'XB 

p 

4ir ' -= - J c 

- B n = 
/Bl 

(2) 

R is the local radius of curvature of field lines, + where concave 
c d . axis, and - convex towar . axis. 

There are obviously an infinite number of solutions which can be chosen 
satisfy the various requirements you wish to put on them . In the low 

case one simply ignores the variation of B due to P_l , and is concerned 
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mostly with the solution of Eq. 2. Also I will consider solutions for long 
machines where curvature terms will not be large. 

The coordinate system for the proposed solution is shown in Fig. z 
indicating the field intensity roughly as shown. Let u be the coordinate in 
along the field lines, running from minus ,,. to plus rr. Let Bo be the 
of B at u = 0 and BM the mirror field. Since we are looking for a low 13 
solution, I will spec1fy the form of B, and choose a particular functional 
form which roughly fits our experimental cases. 

B(u) = Bo e-a.(cos u-1) 

::::Bo(l-a.cosu) a. < < 1 (3) 

This form of field variation approximates actual fields of interest, 

We have to make yet another specific choice, that for P.l, because 
there are an infinite number of possible solutions. Let us choose one 
at least roughly satisfies the mirror loss diffusion equation. Certainly at 
the peak of the mirrors not only must the pressure go to zero but the first 
derivative of the pressure must go to zero also. I have therefore chosen a 
solution which satisfies roughly the slope requirements of the diffusion 

I 
-rr 

I 
I 

- - --+ - - -~=-----..:::::::~ 
I 
I 

I 
0 u~ 

Fig. 2. Coordinate System. 

I 

rr 

equations such as those calculated by Rosenbluth, Judd and McDonald. 
one chosen is given by Eq. 4 

Take 
p 

P.l = -t <1 + cos u) (4) 

From this assumption, of course, finding Pu becomes a completely 
solvable problem. I shall make a change of variables to simplify. 

Let w = (l + cos u) 

Then 
Po P_l = 2 w (5) 

P11 = Po { w _ H l _ e- - J} (6) 2 
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Note that the ratio of P11 to P.i at any point is equal to 

Pu _ { 1 [ 1 _ e- aw]} - - 1- -P_l a w 
(7) 

For large alpha this approaches l, i.e., a scalar pressure. Note that it 
really takes an enormous mirror ratio to get very close to 1 bec.ause the 
expression is exponential in the mirror ratio (R = el a) • 

Taking a. particular case, for example a. = 1, and plotting the solu-
tions, we find that P_l, starting at u = - 'IT' starts with zero slope. P11 
starts with a higher order contact. P_l , Pu , PJl/P.i and B are shown in 
Fig. 3 and evaluated in Table 1. 

These solutions have the property that they fit the boundary conditions, 
at least approximately, in a way that is consistent with the solution of the 
diffusion equation, so that they may have some physical reality. 

This solution may be compared with instability calculations for the 
recent nonisotropic instabilities. Remember that we are dealing not only 
with a low (3 case but also with a very long machine. Thus in some sense, 
if the nonisotropic instabilities are local we need only have a region large 
with respect to orbit diameters to satisfy the required physical conditions 

Table 1. Tabulated Pres sure Balance Solutions 

(l+cos u)=w -cos u -(cos u+l) (w-1) 2Pll u cos u e e 

oo 1 2 0.37 0.136 1 1.136 

30 ° 0.866 1.866 .42 .154 0.866 1.020 

60° 0.5 1.5 .61 .224 0.5 0.724 

90° 0.0 1.0 1 . 368 0.0 . 368 

120° -0.5 0.5 1.65 .608 -0.5 .108 

150° -0.866 0.134 2.39 .880 -0.866 .014 
v 

180° -1.0 0.0 2.72 l.00 -1.00 .000 

u P11/P.1 Pn p.1 Pll + P_l 

oo 0.57 0.568 1.0 1.57 

30° .55 .510 .933 1.434 

60° ,48 .362 o. 750 l.l12 

90° .37 .184 .500 .684 

120° .22 .054 0.250 .304 

150° .104 .007 0.065 .072 

180° 0 .ooo 0.000 0.000 
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for them to exist. The condition is 1 

< stable, (8) 

This can be rewritten as 

= (9) 

Using the solution found earlier, this requires that 

[ -aw aw-1-e J < 
[ 1 - e- aw] 

(10) 

Fir st consider this condition as evaluated at the center of the machine 
(w = 2 ). This yields 

< { 1 log R - (11) 

For a mirror ratio R = 2, this yields < For R = 4, < 
These are very unrestrictive conditions, and are probably too high to be 
valid for the low solutions from which they were derived. 

Near the ends, and one might be concerned about the re-
striction implied by this. However, because of the variation of with u, 
this turns out to be of no concern, since in the limit w o , we find 

{ aw } < ae 1 + + .... (12) 

where is the value of at the center of the machine. 

R < log R ( 13) 

For R = 2, < this is thus a less restrictive condition than (11 ). 

We conclude that the type of velocity space instability here considered 
should not be of concern in the mirror machine for values of present in-
terest, as long as the fields and pressure variations in the vicinity of the 
mirrors are reasonably well approximated by the functional forms here 
considered. 

Solutions to Axial Pressure Balance 

Take B(u) = (1 - cos u) See Fig. 2. 

:. = Bo sin u 

= sin u 
(1 - cos 

sin u for a<< 1 

1. S. Chandrasekhar, Kaufman, and K. Watson, Proc. Roy. Soc, 
A245, 435 (1958). 
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To solve: 

= -

In the limit Q < < l 

Solution: 

i.e. 

= sin u take Po = (1 +cos u) 

- sin u -- . ( - a. u l + cos u) 

- a.Jsin u du s . - a.Jsin u du e = - - 2- sm u (1 +cos u) e du+ 

a cos u 
e - u +sin u cos u)ea cos u du+ 

Let cos u = x 

= + (1 + dx + 

Now pll = at u = 1T J i.e., at x = - 1 

= { [ l l J -+-z- + - e + c 

= Po l } e + c 

c = + e-

{ [ l J e- a} = + e + x- e + 

at u = (x = 1) , 
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( < < 1 ) 

x = cos u 

In terms of u : 

= 

Also 

Let 

at 

= sin u-[l-sin u + 

. { - a(cos u + 1) 1} = u e -

u = 1T. = 

= {l _ [ 1 _ e-a(l +cos u)J} 
1 + cos u _ 

w = 1 + cos u {w = 
w = 2 

at 

at 

u = 

u = 

{ = u)- .... } 

< < 1 

Returning to original assumptions, if = a sin u, exactly, then 

B _ B cos u 
- o e is the resulting form for B. 

B 
The mirror ratio R = 

max 
B . 

2a = e 

The solutions found before now apply exactly. 

= { (cos u + 1J [ 1 u + ll}} 
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= { 1 [ -awl} 1-e 

PJ_ = Po (1 + cos u) = Po w 

= 

= - {} - e QW} 

- 1 as a - (for w between 

Pu- PJ_ 

= u e -

= wl/2 (2 _ w)l/2 e-aw _ 1 } 

a sin u a wl/2 (2 - w)l/2 = = 

= (Pu-

Also, 

aw _
1 

1 - e-aw 

( aw) -2 (2 - w) I -
l (dw) 1/2 w w 

B B -a cos u = o e 

= (l + cos u) 
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HYDROMAGNETIC EQUILIBRIA 

John L. Johnson* and John M. Greene 
Project Matterhorn, Princeton University, Princeton, N. J. 

Abstract 

Hydromagnetic equilibria have been obtained for a 
variety of situations which differ little from that a zero 
pressure uniform axial magnetic field. The perturbations 
considered are particle pressure, axial current, curvature 
of the system, and multipolar fields. These equilibria dif-
fer from those which have been obtained previously in the 
thermonuclear program in that the lowest order term in an 
asymptotic expansion of the magnetic surface is not cylin-
drically symmetric but is a function of both r and 6 . 

The problem is reduced to the solution of a second 
order nonlinear partial differential equation. If it is as-
sumed that the lowest order terms in the expressions for 
the material pressure and axial current distributions are 
of the form a + b where a and b are constants and 

is the zeroth order magnetic surface, the equation is 
linear and can be integrated directly. 

PAPER 26 

Our interest in this problem arose several years ago when the 
stion of how the stellarator can be made hydromagnetically stable was 

studied. In that study an asymptotic expansion was made in which 
ences between the equilibria and an infinitely long cylindrical 

m with a uniform axial magnetic field are small. It was shown, l 
that the system is stable for a system with a multipolar 

which depends on and z as sin hz) < where 
of the material pressure and the strength of the multi-

Efforts are being made to extend that theory in several directions. 
example, the perturbations which limit the stability were found to be 

The assumption that the Larmor radius is small compared to 

J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, 
Phys. Fluids 1, 281 (1958). 

On loan from Westinghouse Electric Corp. Atomic Power Department. 
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the distance over which the perturbation can change should be removed. 
Also, only equilibria in which the lowest order term in an expansion of the 
magnetic surfaces2 was cylindrically symmetric were considered. In 
this case the perturbations could be Fourier analyzed in and the modes 
separated, In more general equilibria which do not have this symmetry, 
for example, toroidal systems, the modes are coupled. In this work we 
carry through the first step of the stability problem for these systems; we 
develop a way of determining the equilibria, 

are2: 
The conditions which must be satisfied for an equilibrium to exist 

Vp l x , (1) 

x B = (2) 

B = ( 3) 

The magnetic surfaces must satisfy the condition 

(4) 

It immediately follows from Eqs. 1 and 4 that p is a function of 
alone. We prescribe a magnetic field which satisfies these equations and 
theu determine the magnetic surfaces which exist in this field. In order 
to avoid the complications due to boundary conditions at infinity we assume 
that a perfectly conducting wall is placed on one of these magnetic surfaces. 

In order to treat toroidal systems we work in a coordinate system 
where the element of arc is 

(5) 

We use the usual thin tube limit and consider Ka < < 1 where a is the 
average radius of the perfectly conducting wall. We separate our plasma 
currents into two terms. The component of J perpendicular to B is the 
diamagnetic current related to the presence a material pressure and will 
in lowest order be denoted by the parameter We introduce the param-
eter = J B/B B to denote the current along the magnetic lines of 
force. It Can easily be shown that 

B = . x 2 (6) 

Finally multipolar fields1 due to currents in external helical conductors 
are denoted by the parameter As in reference 1, we make the 
parameters K, and small and, in order that the effect of the 
parameters enters into the determination of the ashape of the magnetic 
surfaces, we order them so that A2 where is an 
arbitrary expansion parameter. 

2. L. Spitzer, Jr., Phys. Fluids 1, 253 (1958). 
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where 

and 

We consider the magnetic field 

B :::: e B ( a constant), -o -z 

B = e B r , -z o 

= x , 

s > 1. 

= r 

:::: - s z + 

(7) 

is arbitrary, and the vector potential A must satisfy 

This system is more general than the one considered in reference 1 
due to the presence of' and the possibility that two with 
the same value of s but aifferent can exist. ' 

When we carry out our expansion,Eq. 4 becomes 

rn 

B -n m-n ) 

The condition that be periodic over the length is 

m 

s B dz= o. -n m-n (m = 1, 2 ) 

n::::l 
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A similar set of conditions can be obtained for In the zeroth order 
Eq. 9 requires that be a function of r and alone. In the first 
order i\ is determined up to an arbitrary function of In the 
second order Eq. limits so that, = - u , m s ms 

B 
= { o K J. mrl {xs) Im(xs)cos u.rn-A s x s s (11) 

The other set of equations limits the lowest order term in 

+ x 
= - - 2 m 

s 

u 1. + 2 K r 6} + g ) m o (12) 

The problem then is to solve Eqs. 8, 11, and 12 simultaneously. 
In the particular case where and g are linear in we can carry 
through the integration 

We will illustrate how the magnetic surfaces are distorted for a 
few special cases. Since we are quite familiar with multipolar fields, 
we will first limit ourselves to systems with = = i\i\ = and 
with two such fields present. 

In Fig. 1 1 = 1, m = and = o. 7. An m = 
field, of course, is just a bulge. The still basically 
circular although the magnetic axis has been shifted away from the center 
of the system. As is increased the position of this fixed point is moved 
outward, so that it is infinitely far out when 1. From then on the sur-
faces are open. 

The case where = 2, m = 65 is shown in Fig. 2. Out-
side the points located at x = 3, the surfaces are ellipses and, for 
large x nearly circular. If is less than 5, these fixed points are 
at the origin and all the surfaces are ellipses. is greater than 1. 
the fixed points are at infinity and all the surfaces are open. 

Figure 3 shows the surfaces = 3, m = = The 
ellipsoidal surfaces around the three fixed points exist no matter hows 
Ol is. They go to infinity as goes to 1 so that no closed surfaces then 
exist. 

The situation when = 3, m = 2, = is shown in Fig. 4. 
fixed point which is at x = 4 goes to infinity as goes to 1. and the one 
at x = 2 goes to infinity as goes to 1. 5. For < 1. and > 1. 5 
the surfaces are all closed. For in this range they are closed for 
x and open for large x 



-
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Figure 2 
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= 2 
m= o 
a= 



= 3 
m= o 

= 

Figure 

.2 3 .4 

m= 2 
a=. 

Figure 4 
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Figure 5 

Figure 6 
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A rather pretty case is obtained when = 3, m = O. 5 as 
shown in Fig. 5. Again open surfaces exist for large x 1. < 1. 5. 

Finally, if only one multipolar field with 1 = 3 is present in a torus 
in which material is present, the magnetic surfaces are as shown in Fig. 6. 
The numbers were selected solely to illustrate how the surfaces are distorted. 
We note in particular that the magnetic axis is displaced outward, away from 
the center of the torus. 

We have been able to identify with the magnetic flux through a 
ribbon which has one side on the geometric axis of the system and the other 
side embedded in the surface in a constant plane. By also calculating 
the flux through a constant z cross section of a surface we can get 
the rotational transform. 

We are indebted to other members of the Matterhorn theoretical 
group, particularly to Martin Kruskal, for many helpful discussions. 
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AXIALLY SYMMETRIC PROBLEMS IN MAGNETO-HYDRODYNAMICS* 

Martin Schechter 
Institute of Mathematical Sciences 

New York University 

Abstract 

We carry out the details for solving certain 
boundary value problems for = J B considered 
by Grad and Rubin. We show how the given data 
allow a reduction to the Dirichlet problem f'or a 
non-linear elliptic equation. The method of itera- 
tions is used to solve the problem in small domains. 

l. Introduction 

In one of their Geneva. papers Grad and Rubin considered 
certain boundary value problems for the system 

= J x B 

B = 
(1 .. 1) 

(1.2) 

in tubular volumes.. (Here p is fluid pressure, J the current 
density, and B the magnetic field.) For instance, in a volume 
V pictured in Fig. 1, suppose that Bn (the inward normal compon-
ent of Bn) is given on the entire surface in such a way that 
Bn > on Bn and Bn on 83. In p 
and given on s1 .. and Rubin gave many arguments to 
show that this and similar problems are well posed (i .e., that 
one can solve for p, J, and Bis V)a It is the purpose of this 

1. H. Grad and H. Rubin, Hydrodynamic equilibria. and force-
free fields, Proc. of 2nd u. No International Conference on 
the Peaceful Uses of Atomic Energya Septo 1958, Vol. 31. 

* The work presented in this paper is supported by the AEC 
Computing and Applied Mathematics Center, Institute of Mathemati-
cal Sciences, New York University, under Contract AT(30-l)-148o 
with the U. s. Atomic Energy Commission. 
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Fig. 1 

Fig. 2 
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paper to show how one can solve the problem in the that 
Vand all given quantities are axially symmetric (1.e., do not 
depend on if we introduce the coordinate system r, as 
shown in Fig. 2). In this case many simplifications can be 
made and mathematically the problem can be reduced to two 
dimensions (as observed in Ref. 1). Indeed, most of our methods 
are contained implicitly in Ref. 1, only they do not carry out 
the details. 

We should remark that there is no difference whether V has 
a hole through it (as in Fig. 3) or notj the mathematical treat-
ment is identical. V may even be a torus about the z axis. 

--- -- - --

Fig. 3 

__ __ 
\ 

Also, it should be noted that p on Jn prescribed on 
instead of Moreover, in place of Jn we may prescribe the 

twist" of the B lines on each tubular p surface. 

The author would like to thank Professor H. Grad for his 
encouragement. 

2. Mathematical Formulation. 

* If we introduce the coordinates indicated in Fig. 2 and set 
u =Br, v = - Bz , w = , Eqs. 1.1 - 1.3 become 

* 

µpr + v(uz + vr) + = (2.1) 

P + u(u + v ) = z z r (2.2) 

(2.3) 

(ur) - (ur) = r z ( 2.4) 

When the subscripts r, z, appear on a capital letter, 
denote components of a vector; when they appear on a small 
letter, they denote partial differentiation. 
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Let G be the two dimensional domain obtained from V by slicing 
it with the plane = o. We only consider the portion r > 
(If there is no hole through r = is part of the 
of G.) Let c2 , be the curves bounding G and corresponding 
to S2, the remaining curve 
(Thus corresponds to the inner surface there is a Hole 

or is the liner= 0 if there is no hole through V.} 
Let O ~ s -::; s 0 and O -s er ~ IT' 0 denote arc lengths along the curves 
c1 and c2 respectively, oriented in such a way that s = 0 at the 

p 
Fig. 4 

intersection P of C1 and c4 and ~ = O at the intersection Q of c2 and c4(Fig. 4). 
The giv~n boundary conditions are 

Bn = a(s} > 0 on c1 (2.5) 
=-b ( o-) < 0 on c2 (2.6) 

= 0 on c3 and c4 (2.7) 
p = c(s) on c1 (or p = c1 (O"') on c2 ) (2.8) 

Jn = e(s} on c1 (or Jn = e1 (<T) on C2) (2.9) 

BQ = .i. at P (or B9 = .e 1 at Q) (2.10) 

where a(s), b(~), ••• are given smooth functions. By the diver-
gence theorem we must assume 

s ~ J 0 a(s) r(s) ds = J b(<'] r(~) dt1'; v, (2.11) 
0 0 
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• 
where r(s) and r(o-) are the values ot r at the points of C1 and 
c2 corresponding to the values of' s and 6 , respectively. 

As shown in Ref. 1, we can reduce the system 2.1-2.4 still 
further. By 2.4, there is a function • (called a stream 
for reasons which will become apparent) such that 

"' ::: Ul' z , 111 = vr r , 'l\l(P) = 0 (2.12) 

Setting q = rw, we see from 2.3 that q is a function or '1\1.* 
Next, dividing 2.1 by v, 2.2 by u, and subtracting give 

v 
= 0 

u 

and hence p is also a function of ijl. Since Pr 

u + v = l {ili + ,,, 1 ,,, ) - 1 L''' z r r "zz "'rr - r "'r = r 'I' 

= P' ('ll)tr , 

(2.13) 

Hence 2.1 becomes 

µ v r p
1 

('1\1) + ! Lijl + 1
2 q(ijl) q 1

(1jl) vr = 0 
r r 

L' + µr2 p
1 

('1\1) + q(ijl) q'('l\I) = 0 
or 

(2.14) 
Having reduced the system 2.1-2.4 to a single equation 2.14 

for '1\1, we now interpret the boundary conditions 2.5-2.7 in terms 
of '1\1. On c1 

•a = '\\Ir rs + *z zs = vrrs + urzs 

= rB • N = rBn = r a(s) 

where N = {z9 , -r8 ) 
hence to s1 ). Hence 

s 

is the inward drawn unit normal to C1 (and 

Similarly, 

'l\l=fr(s) 
0 

a(s)ds _ A(s) 

V = [r(o-) b(O-)d6;; B(cf) 

0 

Hence, the boundary conditions 2.5-2.7 can be written as 

"' = A(s) on c1 

= B(O") on c2 
= v on c3 
= 0 on C4 • 

(2.1$) 

(2.16) 

(2.17) 

(2.18) 
(2.19) 

(2.20) 

* Here we tacitly assumed that 1jl 
2 + '1\1 2 = r 2 (B 2 + B 2) ¥ o. 

Only such flows are of interest physically. r z 
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At first glance, one might be led to believe that we have 
reduced our problem to solving the nonlinear partial differential 
equation 2el4 subject to the boundary conditions 2.17-2.20. 
However, it should be realized that we do not as yet know the 
functions p(w) and q("1) and until we can determine these functions 
we cannot hope to solve 2.14. We shall now show how the remaining 
boundary conditions determine p(w) and q("1) in the interval 
0 ~ ~ ~ v (cf. 2.11). 

t 
Since A (s) = a(s) ~ O in 0 s s ~ sq we can solve A(s) = A 

for s in the interval 0 s A ~ v : s = SlA1. Thus 

S 1 (A) = l N w C a ( S (A) ) • o on 1 

p = c(s) = c(S(A)) 

Hence, by 2.15 

p(w) = c(S(t)} 

Similarly, 

~ = qr rs + qz zs = ( (rw) r + rw z ) r s z s 

Thus 

= - µrJn • 
s 

q = -µ J r(s) e{s) ds +.lr(O) _ E(s) 
0 

on c1 • Hence 

q('1J) = E(s(ljl)) 

(2.2la) 

(2.2lb} 

It is convenient for purposes of solving 2.14 to extend the 
def'initions of p(1jl) and q{\11) outside the interval 0 '$ v s v to 
all values of "1· This may be done in many ways. In particular, 
we may demand the following. Set 

H(r,"1) = µ r 2 p 1
(v) + q("1) q

1
(\jl) {2.22) 

,, 

'A = max I H(r,\jr) I 
r1-sr~r2 
os"1~" 

(2.23) 

I oH I M= max ~ (r,'ljr) 
r 1s-rs:r2 oswsv 

(2.24) 

where we assume that G is contained in the strip r 1 ~ r ~ r 2 • 
Let e > 0 be any fixed quantity. We continue the aefinition ot 
p ( 1jl) and q ( llJ) to the whole interval - oo < 1jl < ex> in such a way 
that 

max IH(r,v>I - A.< e 
rr~r~r2 (2.25) 

-oo<1jl<oo 
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max 
r1~r~r2 

-co<1jl<oo 

j ~ (r,w) j - M < e (2.26) 

3. Solving the Problem. 

In this section we shall employ the method of iterations to 
solve 2.14 with the boundary conditions 2.17-2.20. (This is 
called a Dirichlet problem for 2.14.) The difficulty in solving 
it stems from the non-linearity of the term H(r,w) (cf. 2.22). 
The advantage of our method is that it lends itself to calculation 
quite readily. At the end of this section we shall compare our 
results with those obtained using a powerful fixed point theorem 
of Berkho1'f-Kellogg2 and Schauder.3 The drawback or the latter 
method is that it gives no hint as to now solutions may be calcu-
lated. 

Let Wo be any smooth function 1n G satisfying the boundary 
conditions 2.17-2.20. The method of iterations demands that we 
be able to solve the linear equations 

Lw = - H(r;t0 ) 

with the boundary data 2.17-2.20. If G is bounded away from 
r = O, the result is olassica.14. The case when G touches the 
z axis is treated in Appendix I of th~s paper and is taken from 
a more general result of the authorB.~ 

We next form a sequence w0 , • 1 , • 2 , ••• where Wn is recur-
sively defined as the solution of 

L*n = - H(r,~n-1) 

satisfying the boundary conditions 2.17-2.20. Employing the 
norm 

we note that 

II al II = max 
(r,z)eG 

m <r,z) I , 

L(*n+l - wn) I< (M + €) II Wn - Wn-1 I I 
(cf. 2.26). Now assume that G is contained in the rectangle 

o ~ r 1 ~ r ~ r 2 , z1 ~ z ~ z2• 
maximum principle shows that 

II II < (M+e) 
•n+l - wn 4e 

A simple application of the 

(J.l) 

2. G. D. Birkhoff and O. D. Kellogg, Trans. Amer. Math. Soc., 
Vol. 23, 1922, pp. 96 - 115. 

J. J. Schauder, Studia Math., Vol 2, 1930, pp. 171-180. 

4. J. Schauder, Math. Zeit. Vol, 38, 1933·34, pp. 257 - 282. 

5. M. Schechter, On the Dirichlet problem for second order ellip-
tic equations with coefficients singular at the boundary, 
Communications on Pure and Applied Mathematics, to appear. 
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(The oroof of 3.1 will be carried out in Appendix Ile) Now 
assume that 

r 2 < ~· (3.2) 
M+e 2 

Then we can always find an e > O such that@= Lj:G r2 < 1 • 
This is a sufficient condition for the sequence '41 0 , 'l't' '!r2 , .... 
to converge uniformly to a limit function (cf. Append x III). 
Moreover, it follows from the interior Schauder estimates (Ref. 4) 
that the limit function ' has continuous second derivatives and 
satisfies 

Lw = - H(r,\lf) • 

Since each of the functions ~n satisfies 2.17-2.20, the limit 
function ~ does likewiseo Thus ~ is a solution to our problem. 

A still easier argument shows 
when 3.2 is replaced by 

that the iterations converge 

z2 - zl < ~ (3.3) 

Since the quantity M plays such an important role in the 
method of iterations, we shall express it in a form in which the 
dependence of its magnitude upon physical quantities is apparent: 

2 
M = max r d (.IL ~) + 1 d 

c1 ~ dS Bn as Bn di 
B9 dB~ <:s- o:s > n 

(3.4) 

We would like to mention that Bers and Nirenberg6 were able 
to solve very general equations of the type considered here by 
making use of the fixed point theorem mentioned above. It follows 
from their work that a solution of 2.14, 2.17-2.20 exists when 
r 1 > 0 without the restrictions 3.2 or 3.3. Most likely their 
result can be carried over to tho caso r 1= 0 without much diffi-
culty. 

4. Physically significant solutions. 

In order to solve equation 2.14 we extended the definitions 
of p(') and q(') outside the interval 0 ~ w s v. However, it is 
obvious that for a solution to have physical significance, it 
must be contained in that interval. In this section we shall 
give some configurations for which the solution of 2.14, 2.17-
2.20 satisfies O ~ • ~ v. Proofs are given in Appendix IV. 

As before, we assume that G is contained in the rectangle 
o ~ r 1 ~ r ~ r 2 , z1 s z ~ z2 • Define H(r,w) and A by 2.22 and 
2.23, respectively. 

Theorem 4.1. If H(r,O) ~ 0 and H(r,v)s O for all r in 
ri ~ r ~ r2 , then there is a solution w of 2.14, 2.17-2.20 
satisfying 0 ! ' ~ v in G. 

6. L. Bers and L. Nirenberg, On linear and non-linear elliptic 
boundary value problems on the plane, Atti del Convegno 
internazionale sulle Equaz·ioni alle derivate parziali, 
Trieste, August 1954, pp 141 - 167. 
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Next assume that G is the rectangle r1 ~ r ~ r2 , 
z1 'S z s z2 • If C1 and C2 are the lines z = z1, ·z = z2, respec-
tively, then s = a-= r - r1 • 

Theorem 4.2. If r1 > 0 and there is an e > 0 such that 

then there is a solution w satisfying o s v ~ v. 

For the special case when ~n = 0 on c1 , we can do slightly 
better. For then IH (r,•)I ~ r A1 , where X1 is some fixed 
constant. We do not have to assume r 1 > O. 

Theorem 4.3. If there is an e > o such that 

x +e 2 2 2 Xl+e 2 2 2 
~ (r -r1 ) ~ A(s), B((f') ~ v - ~ (r - r 1 ) , then O~w~v. 

Pinally, wa mention the case when C1 and C2 are the lines 
r = r1 , r = r 2 , respectively. Then s = ~ =· z - z1 • 

Theorem 4.4. If there is an e > 0 such that 

~ (z - z1 )2 ~ A(s), B(6) ! v - ~ (z - z2 )2 , 

then O ~ '41 ~ v • 

Appendix I. 

The linear problem when r 1 = O. 

We wish to solve the Dirichlet problem for the equation 

L•1• = ''' + ''' - 1 ''' = f(r z) ? - Trr •zz r •r ' (I.1) 

where f(r,z) does not depend on 1'1·• For r = o, it was solved by 
Brousse and Poncin 1 and if one can exhibit a particular solu-
tion of I.1, their result gives the complete answer. Here we 
take another approach. 

Let Y! be any function which take~· on the desired boundary 
values. Setting , = "1- ~ , we get as an equation for ¢ 

L¢ = f(r,z) - L ~ : F(r,z) (I.2) 

and ¢ = 0 on G, the boundary Q1' G. Hence if we can solve I.2 
:for any F(r,z) with¢ = 0 on G, we can solve I.l for any .f(r,z} 
and "' having the desired boundary values. Thus we need only 
concentrate on the problem for ~. 

7. P. Brousse and a. Poncin, Quelques resultas generaux 
concernant la determination de solutions d 1 equations 
elliptlques par les conditions aux frontiers, Jubile 
Scientifique de M. D. Riabouchinsky, Pub. Sci. et Tech. 
de Ministere de 1 1 Air, Paris, 1954. 
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Lemma I.l. Suppose IF(r,z)I ~ A
1 

and that¢ is a solution 
of I.2 which vanishes on G. Then 

1..
1 2 r2 1¢1 ~ 7r log r :: h(r) (I.3) 

in G. 
I 

Proof. It is easily checked 
L(¢ - h) = F + A' > 0 in G, while 
maximum principle 8,9 ¢ ~ h in G. 
function -(¢ + h) gives the other 

that Lh = -.J.. • Hence 
¢-h ~ 0 on G. Hence by the 

The same argument for the 
half of the inequality I.3. 

Returning to our1problem, let Gn be the intersection of G 
with the halfplane r>;r • Si:r;i.ce G0 does not touch r = o, we can 
solve I.2 in Gn with ~=O on Gn• Call the solution ¢n• If n > m, 

we have, by Lemma I.l, 

I¢ I < ~ log mr2 n - 2m~ 
(I .4) 

on r = ~ • Since LC¢n - ¢m) = O in Gm, we have, by the maximum 
principl.e, 

(I.5) 

in Gm• If .J... 'S m, I. 5 surely holds in G£. Now fix .£ and let 
m, n --+ CD • Then I¢ - ¢. I -.. 0 uniformly in Gg. Thus there 
is a continuous func¥ion W in G~ to which the ¢n converge. It 
follows from the interior Schauder estimates {Ref. 4) that ¢has 
continuous second derivatives and that the derivatives of the ¢n 
converge to those of ¢. Thus ¢ is a solution of I.2 in G,e. 
Since ,.f was arbitrary,¢ is a solution in G. That¢= 0 on that 
part of G not touching r = 0 follows from the fact that each 
~n = 0 there. That ¢ = 0 on r = 0 follows from Lemma I.l. 

Appendix II. 

Proof of 3.1. 

The proof of J.l follows almost immediately from Lemma I.l. 
Since 

l11tn+l-111nl 

8. E. Hopf, Preuss. Akad. Wiss. Sitzungsber, Vol 19, 1927, 
pp. 147 - 152 . 

9. Bateman, Partial Differential Equations, Ca~bridge 1932, 
pp. 135 - 137. 
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Now the maximum of the functlon r 2 log~ occurs at r = e·l/2 r 
and equals r 22/2e. Hence 2 

2 

''n+l .. \jlnl ': ~; (M + E:) II 'tn - "'n-1 11 
from which ).1 is an immediate consequence. 

Appendix IIL 

Proof of convergence of iterations. 

If condition 3.2 is satisfied~ then 

II "'n+l - "'n II ~ @ II ljrn - •n-111 (III. l) 

where @ is some constant < 1. Since III.l holds for all n, 

II 'llt+1 - "'t II ~ ®II wt - "'t-1 II~ @2 II "'t-1 - tt-2 II s 

! ® t II "11 - llto II . 
Thus for n > m 

~ @m II "11 - \110 \I • ~ ~ 0 

as m,n-+- o. Thus w • t . w , ••• forms a Cauchy sequence and 
there is a continuoui f~cti6n • to which they converge uni-
formly. 

Appendix · IV. 

Proof of Theorem 4.1 - 4.4. 
Proof of Theorem 4.1. Since H(r,O) ~ 0 for all r in 

r 1 s r ~ r2, we may make H(r,1jl) ~ O for "1 < o. Similarly we 
may assume H(r,•) ~ 0 for lit > v. Now suppose lit is a solution 
or 

Lt = - H(r,"1) 

satisfying the boundary conditions 2.17-2.20. If "1 < 0 anywhere 
in O, it must have a negative minimum at some interior point. At 
such a point Lt = -H(r,\jl) ~ o. Hence by the maximum principle, t 
must be identically a constant in the neighborhood of such a point. 
Thus the set of minil!lUnl points is open. By continuity it is 
closed. Hence w is identically a constant, which is impossible. 

Proof of Theorem 4.2. 
~ = w + ~ ( 2r2 

Set 
r 2 2) log -- + r 1 - r 

rl • 
Then L¢ = - H - (A+E:) ~ 0 in G, while ¢ ~ 0 on G. Hence ¢ ~ 0 
inside. Similar reasoning proves the other half of the inequality. 

The proofs of Theorems 4.3 and 4.4 are similar to those of 
Theorem 4.2 and are omitted. 
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PAPER 28 

ASYMPTOTIC THEORY OF HAMILTONIAN AND OTHER SYSTEMS 

WITH ALL SOLUTIONS NEARLY PERIODIC 

M. Kruskal 
Project Matterhorn, Princeton University, Princeton, N. J. 

Abstract 

Consider a system of N ordinary first-order differential 
equations in N dependent variables, and let the independent vari-
able s not appear explicitly. Let the system depend on a small 
parameter E and possess a formal infinite power series expansion 
in E , and suppose that the limiting system for E = 0 exists and 
has only periodic solutions (in general not all with the same period, 
however) i.e., all the trajectories of points moving according to 
the equations form simple, closed curves. It is shown that a for-
mal solution can be constructed involving infinite power series in 
E and satisfying the equations over large domains of s (of order 
l/E ). It is proved that the true solutions of the system exist over 
such domains and are asymptotically represented as E -- 0 by the 
formal solutions. The construction is based on the standard type 
of formal series solution {useful over boWlded domains) of a "re-
duced'' system of N -1 equations in N -1 dependent variables and 
with the new independent variable CJ = E s; the omitted variable 
is essentially an angle variable e describing the phase around 
the simple; closed curves. There are various interesting proper-
ties which, if possessed by the original system, are also possessed 
by the reduced system. 

If the original system is Hamiltonian, or is even trans-
formable into a Hamiltonian system by a formal infinite power 
series transformation of variables, then one can define the usual 
action integral J = f .E p dq to all orders; the integral is taken 
around the phase loop. It is proved that J is an integral (a "con-
stant of the motion") of the system and that the Poisson bracket 
of e with J is unity, both to all orders. The usefulness of this 
particular integral is that it is computable locally. The reduced 
system, after elimination of another dependent variable by means 
of the constancy of J, can itself be put in Hamiltonian form; if 
its solutions are nearly periodic, the whole procedure can be re-
applied. 

The present theory encompasses previous proofs of adiabatic 
invariance to all orders for particular systems such as the harm on-
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ic oscillator 1, the nonlinear oscillator 2, the charged particle 
spiraling with small gyration radius and period in a given elec-
tromagnetic field 3, and the longitudinal back-and-forth motion 
of such a particle trapped between two 11magnetic mirrors" in a 
weak electric field 4. There are many other applications, not 
only of the result on adiabatic invariance, but more generally of 
the methods and results involved in obtaining the. reduced system 
by "taking out" a relatively fast, nearly periodic variation. 

1. R. M. Kulsrud, Phys. Rev., 106, 205, (1957). 

2. A. Lenard, Ann. Phys., 61 261, (1959). 

3. M. Kruskal, "The Spiraling of a Charged Particle, 11 Rendiconti 
del Terzo Con resso Internazionale sui Fenomeni D 1Ionizzazione 
nei Gas tenuto a Venezia, p. 5 2, Societa Italiana di Fisica, 
Milan, (1957). Same as M. Kruskal, The Gyration of a Charged 
Particle, PM-S-33, NY0-7903, (1958). 

4. C. Gardner, in press; alE.o presented·at this conference. 
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ADIABATIC INVARIANTS OF CHARGED~PARTICLE MOTION~~ 

Clifford Gardner 
Institute of Mathematical Sciences 

New York University 

Abstract 

PAPER 29 

The problem of the motion of a charged particle of 
small mass is considered from the standpoint of perturba-
tion theory. By a canonical transformation expressed as 
a power series in the mass, the Hamiltonian of the 
system is transformed so that Kruskal's series for the 
magnetic moment appears as the momentum conjugate to an 
ignorable coordinate. This furnishes a new proof of 
Kruskal 1 s theorem on the constancy of the magnetic 
moment and also produces a Hamiltonian for the guiding-
center motion, with two degrees of freedom. If now the 
particle ls trapped between two magnetic mirrors in a 
field which varies slowly with time, a repetition of the 
perturbation treatment using the guiding-center Hamiltonian 
gives a power series which is a generalized second or 
longitudinal adiabatic invariant. The series is constant 
to all orders in the mass. Also·, the dynamical system is 
reduced to one having ~ degree of freedom. 

l. Introduction 

Our subject is the motion of a charged particle of small mass 
in an electromagnetic field and the associated adiabatic invariants. 
The results are well known, but our method of treating the problem 
should be of interest. The method is a generalization of a simple 
and illuminating discussion of the adiabatic invariant of the 1 harmonic oscillator which has been presented by Chandrasekhar. 
The method is an adaptation of the classical methods of perturba-
tion theory of a Hamiltonian system. The method provides a 

*The work presented in this paper is supported by the AEC 
Computing and Applied Mathematics Center, Institute of 
Mathematical Sciences, New York University, under Contract 
AT(30-l)·l4BO with the u. s. Atomic Energy Commission. 

l. s. Chandrasekha;r, in "The Plasma in a Magnetic Field", edited 
by R. Landshoff, Stanford University Press, 1958. 
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discussion of the validity of the adiabatic invariants which, it 
is felt, has advantages of clarity and simplicity. Also the 
method provides the basis of a discussion of the second or 
longitudinal adiabatic invariant which is more rigorous than 
discussions presented heretofore. 

2. A Special Hamiltonian Formulation of the Equations of Motio~ 

We consider a particle of mass £ and unit char§,e in an 
electromagnetic field. If E 11 is the component of E parallel to 
~we assume 

(1) 

Also we assume tha~ the field strength B is bounded-away from 
zero, and that E, tl and their derivatives are continuous and 
bounded. We suppose that the initial position and velocity of 
the particle are given independently of e. 

It is well known that for small e the motion is compounded 
of three simpler motions as follows: 

(a) the particle gyrates rapidly about a guiding center 
(b) the guiding center moves at moderate speed along a 

magnetic line 
(c) the guiding center drifts slowly from one magnetic 

line to another. 

We now show how coordinates and momenta may be defined in such a 
way that each of the motions (a), (b), (c) is clearly associated 
with a particular degree of freedom. 

It can be shown2 that 

V·B=O 
implies that parameters a,~ (depending on the rectangular coordi-
nates x 1 and the time t) can be found so that 

(2) 

Clearly a, ~ are constant on a magnetic line, and so a magnetic 
line is specified by giving a, ~ definite values. It follows that 
with the appropriate gauge we have 

(3) 

Let s measure arc length along a line of force. Then s,a,~ may 
be used as geometric coordinates in place of xi. We note that 

- ~ (~ + a*) = E 11 = 0( e ). 

by the assumption Eq. 1. 

2. H. Grad and H. Rubin, "Hydromagnetic Equilibria and Force-
Free Fields", (Appendix I), Inst. of Math. Sci., New York Un., 
NY0-2358, Jan. 1959. 
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Now the usual Hamiltonian formulation of the equations of 
motion is given by 

(5) 

The generalized coordinates here are the rectangular coordinates 
xi' and the momenta Pi are given by 

(7) 
~ . where v denotes the velocity vector, whose components are xi. 

The formulation of the equations of motion which we need is 
obtained by defining qi' p 1 , H by the following relations: 

~ ~ 

~ P-A v = e: = 

s = q2 

a. = P3 + e:ql 

(3 = q3 + e:pl 

A straightforward calculation shows that 

( 8) 

(9) 

(10) 

p . di - Hdt = P3 dq3+ ep2dq2 + e2pldql - e:Hdt + d(tP1P3> (11) 

Hence, it follows from Eq. 6 that 

(12) 

We now have what we may call a quasi-Hamiltonian system. Here H 
is given as a function of q1 , p1 , t by Eqs. 8 and 10, where the 
coefficients are understood to oe evaluated in terms of the q1, Pi 
with the aid of the relations (Eq. 9). The equations of motion 
which are derived from Eq. 12 are as follows: 

q _ 1 oH . 1 oH 
i - £ op1 

, P1 = - e oq1 
oH . oH ( 13) q2 = op2 , P2 = - oq; 

. e oH . oH 
q3 = P3 = - e: 3q3 (Sp3 ' 
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We see from Eqs. 8, 9 that q1 , p1 are essentially velocity com-
ponents of the gyration, and q2, P2 describe the motion along 
the line, and q 3, PJ designate the line of force on which the 
guiding center Is located. In this sense, then, each of the 
motions (a), (b), (c) is associated with a particular degree of 
freedom. 

Note that Eqs. 8 and 9 show that each of the q's and p 1 s 
is 0(1). I.f we expand Eq. 10 in powers of_e, using Eq. 9, we 
obtain 

1 M_ 1 [ ~ 2 0 s ( ExB) ...:i 2 E2 < 
H= £ (~+a 'Ot)+ ~ Iv.LI + 2[o-t + 

8
2 .vslp2+p2 - ~) + O( e) 

where now the coefficients are to be evaluated at 

s = q2 ' a = P3 ' ~ = q3 
and where we have used 

E 11 =0(E) • 
...:i. Here v.L is det'ined by 

~ ...:i. ..Ji. ~ 
-lo ...:i. ( !?. ~) B E x B 
VJ.. = v .. . 'B - B2 B 

or -lo ~ ~ ~ ...::i 
...:i ....1 (Wx"Vs} ( B ExB) 
VJ.. = Vo.Cpl- B • P2 B + 2 ] 

B 
~ ...I ~ E' ...:i. 

_ V~[ql- (Va~ ~s) • (p B + x B) ] 
2 J3 B2 

Note that Eqs. 4 and 14 show that H has the form 

H = l H_l(q3,P31t} +Ho+ £Hl + £2H2 + ••• 

where H
0

,H1 , etc. depend on all the q 1 s and p's and on t. 

3. The Magnetic Moment 

It is well known that the magnetic moment v}/B is an 
adiabatic 2nvariant, meaning that as e tends to zer~, the 
quantity v~/B. tends to a constant. In fact Kruskal has shown 
how to construct a series {not necessarily convergent) 

2 µ = µo + £µ1 + £ µ2 + ••• 

where µ are functions of the position and velocity of the 
particl~, whose form does not depend on the initial conditions, 
and whe:r>e 

= 21 µ.
0 

V..1.. B 

3. M. Kruskal, The Gy:r>ation of a Charged Particle, U.S.A.E,C. 
Report no. PM-S-33, NY0-7903, March 12, 1958. 
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and such that 

(19) 

We shall now show how this result may be derived by performing 
a canonical transformation on Eq.18 so that we obtain a Hamiltonian 
with a coordinate 0which is ignorable to oN~r eN-1. Then the 
conjugate momentum is constant to order e , and we obtain Eq. 19. 

The method consists in repeated application of a transfor-
mation which amounts to introduction of the action and angle 
variables corresponding to ql• Pl, though we prefer to work with 
rectangular coordinates rather than with the action and angle 
variables, which are of the nature of polar coordinates. 

We observe that if we consider H0 as function of ql, p1 holding all the other variables fixed, then the lines H0= constant 
in the ql p1 plane are nested closed curves topological~y like a 
family of concentric circles. (In fact, Eqs. 14 and 17 show 
that these curves are similar concentric ellipses.) We shall 
try to find a canonical transformation (prjserving the form 
Eq. 13 of the equation~ Qf ll'IOtiQn) to qk\N , Pk.~NJ, H(N), so 
that as function of q1 tNJ, p1 (NJ, the curves H\~) =constant are 
indeed concentric circles, and H\N) has the form 

We cannot do this exactly, but ~e can to it except for an error 
of order eN; and then we obtain, using Eq. 13; 

The first step is to find an area-preserving mapping of the 
q1-p1 plane into a q1 1 -p1 • plane such that the lines H0 =constant 
in tne q1-Pi plane get mapped into concentric circles, with center 
at the origin, in the q1 •-p1 • plane. Of course the mapping 
depends on the other variables q2,p2 1 q3,p3,t as parameters. Let 
r, e be the 'polar coordinates in the q1 • p1 • plane of the image 
of the point q1 , p1 • Then 

nr2 = § p1 dq1 

jq1dc1"/lt7III <20> 
Q - ------- § do/IV'HI 

where we integrate along the line H0 = constant which passes 
through q1 , p1 • Here ~is arc leng~h on this line and IVHI is 
the gradient lWith respect to q1 , P1} of H. Of course nr2 and 
G/2n are the usual action and angle variables. 

The fact that the mapping preserves area implies that 

§Pl dql =f P1'dq1' = - j q1'dp1' 

195 

(21} 



so that the line.integral 

JcP1 'dq1 + q1'dP1'1 

is independent of the path of integration in the ql' Pi' plane, 
and therefore defines a function G. It is convenient to repre-
sent Gas a function of q1 and p1 •, so that G is a generatins 
function* of the transformation; 

or course, G is a function not only of q1 , Pi' but also of the 
parameters q2 , p 2 ; q3, p3; t. 

(22) 

Now we define a canonical transformation of the system Eq. 
18 with the aid or the generating function 

as follows: 

_ 1 oF q I 
_ 1 oF 

P1 - 'i Oq'l l - E Spl I 
_ oF _ oF P2 - (Sq2 q2 I - Fili' (24) 

P3 = e oF 
Clq3 q3' = £ oF 

~ 

H• = H + * ( 25) 

This transformation preserves the form Eq. 13 of the equations or 
motion, as is seen by the easily verifiable relation 

(26) 

which shows that Eq. 12 is preserved, and hence its consequence 
Eq. 13. 

~.E- It is not always true that G is a single-valued function of 
ql, pl'; but this difficulty can be circumvented, at the cost 
or sl ghtly complicating the discussion, by working with G as 
function of q1 , p1 • 
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How the crux of the matter is that, by Eqso 23 and 24 we 
see that 

P2 = P2' + O(e) q2 = q2' + O(e:) 

P3 = P3' + O(e 2 ) q3 = q3' + O(e2 ) 

and hence by Eq. 18 we see that 

H' = H + O(e) 

It follows by the construction of q1 •, Pi' that H0 , as function 
of q1 •, Pi' has the form • 

Ho= Ho'((ql' )2 + (p1')2, q2',P2',q3'1P3',t) + O(e). (27) 

We have made progress toward our goal. We have now that H' has 
the form 

The next step is to repeat the process. Namely we define 
q1'', Pi'' so that the lines 

H
0

1 + eH1 • = constant 

become concentric circles centered at the origin, when drawn in 
the qJ.'.'' ... Pi" plane. These lines already deviate from circles 
only oy 0( e), so that q1

11
, Pi" need diff'er from q1 ', Pl' only by 

O(e). The generating function G in Eq. 22 can be taken to be of 
the form 

G = q1'P1' + eGl ( ql' ' P111 ) • 

We have then 

F = l q Ip II e 3 3 + q2 'P2 11 + eq 'p II + e2G ( q I p 1/) l 1 l l , l 

and we find 

P2 I = P2" + O(e2 ) q2 ' = q ,, + O(e 2 ) 2 

P3' = P3 II + O(e3 ) q3 I = q3t/ + O(e3} 
,, 

H' O(e2) H ::: + 

and we obtain 
II 1 (2)(( 11)2 ( 11)2 ) 2 (2) H = £ H0 (q3•,p3•,t) + H0 ql +Pi , ••• +e H2 + .••• 

The process can be repeated again, working with H~2 >+ e2H~2 >, 
and so on. Fin~lly we get 
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An1 :r;i.ow, using the first pair of Eqs. 13 to compute qiN) and 
p1 NJ, we readily see that 

~ ((qiN))2 + (piN))2] = O(eN-1) (31) 

It remains to identify the invariant here as the magnetic moment. 
By the area-preserving character of t~e mapping of ql Pi into 
f11.', Pl' we see that x[(q1•)2 + (p1•)] is the area inside a line 
H = constant in the q1 ,p1 plane, and hence, by Eqs. 17 and 2 we 
have 

(32) 
V.1. 2 + O(e) 

Ivax ~~I 
2 = yt- + O(e) 

Hence we have the result of Kruskal which was mentioned above. 

( N) We ~ay note that if r, Q are polar coordinates in the 
q1 - p1 lNJ plane, thenµ= r2 and -9/2 are canonically conjugate, 
since area is given by 

§ piN)dqiN) = § f dQ = f µ d(-Q/2) 

Since H(N) to order eN-l depends on µ but not on 91 we see that 
µ is constant because it is conjugate to the ignorable coordinate 
-9/2. 

4. The Second and Third Adiabatic Invariants 

We now not~ that except f~r errors of high order in e we 
can replace (q1\N))~ + {p1 \N)) in Eq. 30 by the constant~· 
Then we have erfectively a Hamiltonian with two degrees ot 
freedom, which describes the motion of the gUiding center of the 
particle. Suppose now that 

(l) the electric field is small 
(2) the magnetic field varies slowly in time 

Then the Hamiltonian of the guiding-center motion is 

H = t (~ + a~) + ~ {p2
2 + µBJ +higher order terms (33) 

as we see from Eq. 14. The coefficients are to be evaluated at 

s = q2 ' a = P3 , ~ = q3 

For fixed valued 0£ q3,p3,t, we have 

H = eonst. + ~ {p2 
2 + µ.B - J ¥ dJ + ••• (34) 

It is well known that it is appropriate to define a second adia-
batic invariant, associated with Q2, p2 , when the lines H = 
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constant are nested closed curves In the q2-P2 plane. We see 
from Eq. 34 that this will be true if 

µB - J E,1/e ds 

increases enough as one traverses a magnetic line in each 
direction, and has only one minimum on the line. 

The method applied to the magnetic moment works here. We 
can show that 

f p 2dq2 = § v11 ds 

is the first term of a series which is constant to any order in 
e, and a parameter measuring the smallness of 't and the slowness 
of the time variation. As before, any canonical transformation 
can be applied to q2, p2 , and produces a result which is, to 
lowest order, the same as if H did not depend on q3,p3,t. This 
fact pei-mits the carrying out of the construction. 

If a second adiabatic invariant exists, then the system 
reduces to one having one degree of freedom, since a coordinate 
is ignorable. This system describes the long-term drift of the 
guiding center from one line of force to another. If time 
variations are extremely slow, and the curves H = constant in 
the q 3 - PJ plane SJ'e closed, then it has been pointed out by 
Teller and Northrop~ that a third adiabatic invariant may be 
defined. The validity of this concept follows again, by 
application of the methods explained herein. The appropriate 
definition of the third adiabatic invariant follows at once from 
Eq. 15. We see that 

J pJdq J = § ad(3 = f a V~ • d-; = § t_ • d°t 

Hence the third adiabatic invariant is the ~ through the 
tube of lines occupied by the particle. 

4. See the paper by E~ Teller and T. Northrup in these 
Proceedings. 
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AN 11 ADIABATIC INV ARIAN CE THEOREM" FOR LINEAR OSCILLATORY 
SYSTEMS OF FINITE NUMBER DEGREES OF FREEDOM 

Andrew Lenard 
Project Matterhorn, Princeton 'university 

Abstract 

The subject of this paper is the asyniptotic behavior of 
a linear, oscillatory system in the limit where the coefficients 
vary slowly compared with the characteristic frequencies. 
Two theorems are stated and proven rigorously. The first one 
concerns the asyniptotic expansion at times when the coeffi-
cients do not vary. The second states the sense in which the 
expansion is an approximation to the exact solution. Two 
simple special cases, given as examples, are (1) the quantum 
mechanical adiabatic theorem, and (2) the adiabatic invari-
ance theorem for the harmonic oscill~tor. 

The purpose of the following paper is to derive a general "adiabatic 
invariance theorem" for a linear, oscillatory system with a finite number 
of degrees of freedom. Such a system can be characterized by a set of 
coupled, ordinary, linear differential equations, which we write in matrix 
form: 

dX 
dt = AX· (1) 

Here A and X are square matrices of q 2 complex elements. The system is 
oscillatory if the eigenvalues of A have vanishing real parts. The system is 
non-degenerate if the eigenvalues are distinct. These conditions will be 
assumed in the following. If the matrix X(o) is non-singular, then X(t) will 
be non-singular for all t, and the q columns of X give q linearly independent 
solutions of the differential equation. 

From the assumptions made about A it follows that a non-singular 
matrix R, and a real diagonal matrix n exist such that 

(2) 

Furthermore, wa = naa are distinct (a = 1, 2, ••• q). The columns of . 

R are the eigenvectors of A. R is determined only up to a transformation of 

' .;& .••• " .' 
,····; ~..,- · · 



the form 
R - RC 

with a diagonal matrix C. This corresponds to the arbitrariness in the 
normalization of the eigenvectors. If the matrix A is independent of t, a 
solution of Eq. 1 is 

X :: R exp {i!2t} 

(3) 

( 4) 

and the most general solution can be obtained by a transformation X - XK 
with an arbitrary constant matrix K. 

Consider now the generalization of these elementary facts for the 
case of a slow time variation of the coefficients A. Slowness is measured 
by the ratio of a frequency typical of the time variation of A to the order of 
magnitude of its characteristic frequencies. We are thus led to investigate 
the asyniptotic behavior of the solution of the equation 

dX 
dt = A.AX (5) 

with the real parameter A - ao, while A = A (t) is assumed to have a 
specified time dependence independent of A.. This problem was thoroughly 
investigated long ago by Birkhoff and Lange:i;l They considered the more 
general problem without the restriction that the system is oscillatory and 
also;\ was allowed to be complex. We shall recall the essentials of this 
theory as applied to the simpler case considered here. 

Let us assume that A, R and 0 have time derivatives of all orders, 
and that at the time t :: 0 they vanish. Let us put 

t 

X = RY exp {~s !2 dt} (6) 

. -1 and let us try to determine a formal power series in A 

00 

L: 
n = 0 

which, when substituted for Y, will make Eq. 6 satisfy the differential 
equation 5~, In order for this to be the case Y has to satisfy the equation 

(7) 

iA (OY - YO) = ~; + QY (8) 

where Q : R-1(dR/ dt). The conditions for this to be a power series 
identity in A_-1 are 

and 

= ( dY (n - 1) err- + QY(n - 1)) 
a(3 

(n ~ 1) (10) 

1. G. D. Birkhoff and R. Langer, Proc. Am. Acad. Arts and Sci. 58, 51 
(1923). Also reprinted in "Collected Mathematical Papers" of G:-iJ. 
Birkhoff. 



First put a = f3; this gives 

( 
dY(n) 

dt 
+ QY(n) ) aa = O • (n ::::: 0 ). (11) 

By making use of the freedom allowed by the transformation, Eq. 3, we can 
always make the diagonal elements of Q va:Qish. Then Eq. ll allows the de-
termination of the diagonal elements of y(nJ in terms of the off-diagonal 
ones; moreover, we set as initial conditions 

y(n} (o}' = a.a 0 (n ::::: 1). 

y(o) (o) can be left arbitrary; moreover, as will be shown below aa 

(12) 

y(~ (t) = Ca = con~tant. (13) 

Next take a #- f3; Eq. 9 implies immediately 

y~J (t) = 0 (a f /3). (14) 

This, coupled with Eq, ll, substantiates the statement that the Y~) are time 

independent. Finally, the Eqs. 10 give a set of recursion relations by means 

of which Y~J (a f /3) can be expressed in terms of the elements of y(k) 

(0 :::; k < n), Q and fl. Thus the scheme of satisfying Eq. 8 formally by 
Eq. 7 is complete. 

We shall prove two theorems. The first one concerns an important 
property of the formal expansion, Eq. 7. The second one establishes the 
relation of the series, Eq. 7, to an exact solution of Eq. 8. 

THEOREM 1. If at t = t all time derivatives of A(t) vanish, then 

for# t = t
0 

all time derivatives of y(n) vanish and all off-diagonal ele-

ments of y(n) vanish. 

The proof consists of induction on n. Note that from the assumption 
it follows that at t = t Q and dfl/dt vanish together with all their time 

0 
derivatives. By Eqs. 13 and 14 the theorem holds for n = O. But by 
Eqs. 10 and ll its validity for n - 1 implies its validity for n. 

THEOREM 2. The series, E • 7, constitutes the as totic ex an-
sion in inverse owers of A of that solution Y t, >.. of E • which satisfies 
the initial condition Ya(3 O, >.. = C~ a(3" This expansion is valid uniformly 
over any finite time interval 0 :::= t :::= t1. 

only, 
This means that a constant M can be found (depending on n and t1 

but not on t and>..) such that 
n-1 y(k) (t) 

I Y a/3( t, >d - L' __ af3....--__ 
Ak 

< M 

k=O 

for all a, {3 = 1, 2, ••• q; all t (0 :::= t::= t1) and all A> O. 

(15) 



To prove Theorem 2, let us fix n, and set 
n y(n) 

y L + z (16) = 

k=O 
An An 

This defines the matrix Z = Z(t, A). A simple calculation shows that Y 
satisfies the differential equation, Eq. 8, with the given initial condition 
if and only if Z is related to it by t 

Z(t, A) = st dt1 Y(t, A.) exp {iA st Odt} y-l (t1 , A.) F(t') exp {-U 5 Odt} 

where 

0 t 1 t 1 

F(t) :: -Q(t) y(n) (t) -
dY(n) (t) 

dt 

Suppose now that a positive number bl can be found such that 

I Ya/3 <t. A.> < bl 

I -1 _ Ya,B(t,A.) < bl 

(17) 

(18) 

(19) 

for a, {3 = 1, 2, . . .q,O~t~ t1 and all A > o. Then if we denote by b 2 an 

upper bound for the absolute value of all the matrix elements of F in 
0 ~ t ~ ;. we get from Eq. 17 

< (20) 

If now b 3 is an upper bound for the absolute value of the matrix elements of 
Y(n) in the interval considered, we can set 

(21) 

and then the inequality, Eq. 15, is satisfied. It remains to show the exist-
ence of bl" The essential point is that the inequalities, Eq. 19, must hold 

for all A. > 0, even though the quantities on the left hand side depend on A.. 
However, from the differential equation, Eq. 8, it follows that 

d 
at = - 2 Re \"7 Q Y fly* fl L (})' y.., a..,, y 

an eq~on in which A. does not appear explicitly. Let us now set 
N - fiJt j Ya(3 I ; then by a simple chain of inequalities we derive from 

Eq. 22 that 

I ddNt I N < qb4 • 

(22) 

(23) 

where b 4 is a bound for the absolute values of all matrix elements of Q in the 

interval considered. But Eq. 23 implies that 

N(t) < N(O) exp (qb4 t). (24) 

Thus we may take b 1 = N(O) exp{qb4 t1}._ anci the first of the inequalities, 



Eq. 19, l1as been demonstrated. To demonstrate the second one, merely 
note that y-l satisfies an equation that differs from Eq. 8 only in that the 
order of the matrix factors in the last term is interchanged, This does not 
affect the argument leading to Eq, 24, and the proof of Theorem 2 is com-
plete. 

We pass on to a discussion of the significance of the results obtained. 
It is clear from the definition, Eq. 6, that the matrix elements of Y play the 
role of expansion coefficients of the solutions of the basic differential 
equation in terms of the eigenvectors of A, or in the usual terminology of 
small oscillation theory, the "normal modes." The exponential factor is 
the fast oscillating phase. The initial condition that Y is diagonal at t = 0 
means that the q solutions standing in the q columns of the matrix X are 
those which at t = 0 are the q "pure mode~." Theorem 2 gives an approxi-
mation to Yin terms of power series in A.- which can be calculated to any 
number of terms. Theorem l is a statement about this approximate solution. 
It says that in regions where the coefficients of the Equation 1 smooth out to 
constants, the q basic solutions become pure modes. This condition, im-
posed initially on the solution at time t = 0, is conserved at any other time 
t = t where the conditions of Theorem 1 are satisfied (of course, only to 

0 

the extent of the approximation given by the asymptotic development in A.-1). 

Note that Theorem 1 does not imply anything about the magnitude of 
the diagonal elements of the Y(n), i.e., the amplitudes of the normal modes. 
It is therefore natural to ask: Under what additional conditions is it possible 
to relate these diagonal elements in a simple manner to their initial values? 
We claim that ~his is possible whenever some information is available about 
the exact solution. The reason is that any exact information on Y implies 

some corresponding knowledge about the y(n) in view Theorem 2, and, 

under the conditions of Theorem 1, the y(n) assume the simple diagonal form, 
so that this information can have implications regarding the diagonal ele-
ments about which Theorem 1 makes no statement. We shall illustrate this 
in two notable examples. 

EXAMPLE 1. Suppose A "' iH, where His a Hermitian matrix. 
Then Eq. 1 becomes the Schrodinger equation for a system with a finite 
number of non-degenerate energy eigenvalues with the Hamiltonian operator 
H. In such a case X, Ras well as Y can be chosen to be unitary matrices, 
consistently with all our assumptions. But a unitary and at the same time 
diagonal matrix has diagonal elements of absolute value one. Hence in this 
case not only is y(n) diagonal under the conditions of Theorem 1, but also 
I Y(o) = l and Y(n) "' 0 (n ;:::: 1). This fact together with y(n) = 0 aa aa ' a{3 
(a 1- f3, n :2:: 0), is the expression of the quantum mechanical adiabatic 

-1 theorem whose proof to all orders in A. was supplied by the author of this 
pape:c2 

EXAMPLE 2. Let A be the two-rowed matrix 

(25) 

2. A. Lenard, Annals £!:..Physics ~. 261 (1959). 



where 11 = 11(t) is a real, positive function. The system of equations corres-
ponding to this choice of A is more familiar in the form of a single second 
order equation obtained by eliminating the variables Xza: 

2 dt . 
(a = 1, 2 ) • {26) 

This is the equation for a harmonic os.cillator with a time varying natural 
frequency ;\!l(t). We have two exact properties of the solution. Firstly, A 
is a real matrix. This implies that 

:: constant. (27) 

Secondly, the trace of the matrix A vanishes. This implies 

det X = constant. (28) 

These two exact contants of motion must be expressed in terms of Y and 
then use must be made of Theorem 1 in order to see what the implications 
are for the non-vanishing diagonal elements C (a = 1, 2). One easily 
c~cbt~t · · · ll 

R = (29) 

n = {30) 

so that through Eq. 6 we can express the "constants of motion", Eq. 27 and 
Eq. 28, in terms of the Y. When this is done, and use is made of Theorem 
1, we obtain clc2 = constant, and cl I c * = constant respectively. These 
imply that the aia onal matrix elements or y have constant absolute value 
at points where Theorem 1 applies. Thus the amplitudes of the osci lations 
vary from one such point to another as shown by the columns of R; in 

particular the quantities 11 j XJ.a I 2 are constants (of course, only asymp-

totically to all orders in ;\). This is the usual "adiabatic invariant" of the 
harmonic oscillator, whose validity for all orders in x-1 was proved by 
R. Kulsrud. 3' 

Finally, it should be pointed out that a completely analogous pro--
cedure shows that a coupled system of harmonic oscillators also has its 
adiabatic invariants. Not only do normal modes go over into normal modes 
{Theorem I), but their amplitudes are regulated by the same inverse 
square root law that holds for a single harmonic oscillator. 

3. R. Kulsrud, Phys. Rev. 106, 205 (1957) • 
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PARTICLE ORBITS IN TIME DEPENDENT 
AXISYMMETRIC MAGNETIC FIELDS 

S. Tamor 
General Electric Research Laboratory, Schenectady, N. Y. 

Abstract 

The motion of a charged particle in a rapidly 
varying spatially uniform axisynunetric magnetic 
field is studied. For particular time dependences 
of the cyclotron frequency, c:cJ ( t) , the trajectory 
is obtainable in closed fonn. If the field is vary-
ing slowly at the initial and final times a simple 
connection is found between the initial and final 
orbits. If we consider two field programs, cJ (t) 
and cJo (t) each of which varies rapidly, but whose 
ratio changes slowly, it is found that this connec-
tion is the same for both time dependences and hence 
defines an extended adiabatic invariant. 

PAPER 31 

This paper describes an investigation of a class of problems 
in which the orbit of a particle in a time-dependent magnetic 
field is obtainable analytically. While the methods are rather 
straightforward and elementary, the results provide some insight 
into the general class of problems in which the adiabatic 
approximation does not apply. The origin of this work was an 
attempt to study the behavior of fast devices of the Scylla 
variety in terms of individual particle trajectories. We 
therefore examined the orbits of a particle in a time-dependent 
axisynunetric magnetic field. 

Consider a cylindrical volume in which there is a magnetic 
field in the axial direction, which is given a function of time, 
but independent of coordinates. We are to obtain the orbit of 
a charged particle in terms of the injection conditions. 

From the axial symmetry, we find at once, that the 
generalized angular momentum, P~ is a constant of the motion. 
The equation for the radial motion is simply 

c:J2S.~t) c2 r + ~ r = ~ (1) 
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( ) eB (t) I where 4J t and C = P" rn The non-linear term me "' 
on the right hand side of Eq. 1 represents the centripetal 
acceleration and can be eliminated by a transformation. 

Let 

. µ(t) r(t) cos f c] qt' ) 
~ r (t') 

(2) 

whose inversion is 

r(t) µ(t) & +(cJ dt' nl/2 
µ2(t') 

(3). 

Then Eq. 1 reduces to 

µ + cJ 2 £t) µ 0 (4). 

If µ(t) is a solution of Eq. 4 satisfying the appropriate 
initial conditions and µ+(t) is any other solution of Eq. 4 which 
is linearly independent of µ, so that the Wronskian )i( S µ, µ+ J is 
non-zero, then the integral in the inversion formula, Eq. 3, is 
simply · 

1 
'v) 

By this set of transformations the orbit problem for arbitrary Pg 
is reduced to that of Pg = 0 

It is well known that when the adiabatic condition is satis-
fied, i.e., when 

that the solutions 

µ 

where 

\ a~ w -l J < < 1, 
of Eq. 4 are approximated by 

= lwl-1/2 [sin(y(t)) 
cos(y(t)) 

t 
y(t) = +J' w (t')dt' 

(5) 

(6). 

It is convenient to describe the orbit in terms of an 
instantaneous cyclotron radius, A, and guiding center coordinate, 
R. It's easy to verify that the conservation of P8 implies 

c.J (R2 - A 2) = canst. (7) 

Furthermore, in the adiabatic limit, combining Eqs. 3 and 5 gives 
an explicit, but lengthy, expression for the quantity 

1~1 (R2 + A
2

) 
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in terms of elementary functions and constants of integration. 
The problem is to find these cons tan ts of integration. 

In the following we confine our attention to c.v(t) satisfying 

(8). 

We specify the orbit in terms of the initial coordinate and 
velocity at t = t 0 and examine the tfajectory at some later time t, 
passing to the limit \t0 I--? 00 , I t ~ 00 . If t and. t 0 have the 
same sign, from Eq. 8 we see that. the adiabatic approximation applies 
throughout the motion, but if t and t 0 have opposite signs this is 
no longer true. 

Let us first consider a class of c.J(t) for which Eq. 4 is 
integrable analytically. Taking 

~(t) 

c.J (- t) 

ktn n > -1 

± cJ (t) 

the condition Eq. 8 is satisfied but in the vicinity of t = 0 the 
non-adiabatic effects become very large. For this cJ, the 
solutions of Eq. 4 are of the form 

tl/2 [ 3v (y) 
Yl.) (y) 

where V = (Zn + 2) -l . To connect the solutions for positive and 
negative times one must remember to use the analytic continuation 
fonnulae for the Bessel function. Having a pair of linearly 
independent solutions to Eq. 4 the constants of integration are 
obtainable and the equation for the trajectory exhibited explicitly. 
While the orbit is in general very complicated and depends in 
detail upon the injection conditions, a rather simple result can 
be extracted in the limit !ti, lt

0
l-7-oo . That is that 

= 1 + 2 'l cot 7r J) (9) 

The symbol ( / indicates that we are to average the initial time, 
t 0 , over a single period,lJ -l(t0 ). The quantity 7 is defined to 
be zero if t and to have the same sign, and 1 if they have opposite 
signs. The notation K!6.1Jindicates that K is a functional ofcJ(t). 

Observe that all the consequences of the non-adiabatic 
acceleration are contained in the 2 '/ cot 7rll in Eq. 9 .. The d _1 parameter, V , describing the nature of the singularity in -- 6J 
and the coefficient k does not appear. dt · 

Equations 7 and 9 combined give the mean energy of an ensemble 
of particles subjected to a single excursion of the field. An 
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interesting limiting case is that of n = 0 , J) = 1/2 . If c.J(-t) 
c..J(t) clearly nothing has happened. The choicew(-t) = -(.J(t) 
means that the field changes sign stepwise at t = 0, and since only 
lcJI appears in Eq. 9, the initial and final orbits are related 
simply by the interchange of R and A· In this case the average 
over t 0 in Eq. 9 is not needed. 

When the field reversal is slower than stepwise the particle 
is free to execute a more violent motion while c;;/(.JJ 2 is small and 
the non-adiabatic effect is increased. A physically interesting case 
is that of n = 1 (the field changes sign linearly) so that the right 
hand side of Eq. 9 is equal to 3. 

Our problem now is to find out whether these results are 
generalizable to other, more complicated forms of cJ (t). Suppose 
that for some (µ 0 ( t) the quantity K { c.> oJ is known. Suppose this 
c..J 0 is in some sense a q.ood approximation to c...l(t). How well is 
K{cu} approximated by Kt w 0j ? 

We formulate this problem more precisely as follows· Consider 
an eJ 0 (t) satisfying condition Eq. 8, and such that e..> 0 -I is 
continuously differentiable except at one point which we conven-
iently choose to be the origin of time. Consider another c.J(t) 
such that~ (t)/6.J 0 (t) is continuously differentiable at t = 0 and 
lim cJ(t)/~(t) = constant (not necessarily the same constant 

ltl~oo 

for positive and negative t). Let the ratio c.J0/~ be a slowly 
varying function of time, whose rate of change is de~cribed ~y 
a "slowness parameter", f, . We seek to express K t(C)j- K [W0 ~ 
as a power series in 6 . 

This problem can be studied by an extension of the method 
given by Kulsrud 1 . The analysis is slightly more complicated, 
but nothing fundamentally new need be~added and only the result 
will be given here. We find that K[w_, - Kl'"'10 } vanishes to as 
many orders in€, as (c,/0 /W has continuous derivatives. 

This enables us to generalize the concept of an adiabatic 
invariant. Ordinarily one seeks "local 11 properties of the orbit, 
such as energy, which is invariant under slow changes in C6) • Here 
we allow GJ to vary rapidly and find that another ~o provides a 
good model for c.J , in the sense that an "integral property" of 
the orbit, K, is the same for w and c.J 0 if c.J0 /w is slowly varying. 
With choice of the model function cJ 0 = const the conventional type 
adiabatic invariance is recovered. 

1. R. Kulsrud, Phys. Rev. 106, 205 (1957). 
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MAGNETO-HYDRODYNAMIC SHOCK STRUCTURE 
WITHOUT COLLISIONS* 

Cathleen S. Morawetz and Herbert Goertzel 
Institute of Mathematical Sciences 

New York University 

Abstract 

PAPER 32 

The problem of proving the existence of a magneto-hydrodynamic 
shock without collisions consists of finding a solution to two Boltzmann 
equations without collision terms and two Maxwell equations. For a 
classical shock structure the solution would lead from one constant 
state at large distances in one direction (the state ahead) to a different 
constant state at large distances in the other direction (the state be-
hind). However, a solution which leads from a constant state ahead to 
a periodic state behind may be interpreted as part of a shock if the 
entropy in some sense increases. Such solutions have been shown to 
exist theoretically if the mass ratio is very small and the character-
istic wavelength is kept fixed. This length is the geometric mean of 
the distances the ions and electrons move forward in a complete change 
of phase in a constant magnetic field. The prescribed distribution 
function for the ions ahead of the shock is a Maxwellian cut-off at some 
speed. Si'.ich solutions have now been computed for various values of 
the Alfven number, pressure and cut-off speed ahead of the shock. For 
certain cut-off speeds there is no "shock". For other values of the 
cut-off speed, in a certain range of Mach numbers, there is a shock 
in the sense described above with a large change in the mean magnetic 
field. The mean magnetic field, for example, may be increased 
through the shock by 75 percent and the oscillation is about 20 percent 
of the final value. Therefore entropy increase is a large fraction of 
the theoretical maximum. 

* The work presented in this paper is supported by the AEC Computing and 
Applied Mathematics Center, Institute of Mathematical Sciences, New 
York University, under Contract AT(30-1)-1480 with the U. S. Atomic 
Energy Commission. 
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A shock structure analysis of a medium strength steady shock involving 
no collisions was presented last year. 1 It used the fact that the ions are 
much heavier than the electrons. This report presents the results of numeri-
cal computations based on the analysis. 

First we pose the full problem and discuss the earlier analysis. One 
wants to find a flow which leads from one constant state (given) very far in 
one direction to another constant state very far in the other direction. The 
width of the transition should be such that it is reasonable to approximate it 
by a sharp discontinuity. 

We consider only the case in which the magnetic field at large distances 
is perpendicular to the direction of flow. The variables of the flow are the 
two distribution functions f± for the ions and electrons, the electric field E 
and magnetic field H. There is no dependence on time and x is the space 
variable. Then f± are functions of x and the two components of velocity 
u, v. 

The equations governing the flow are the two Boltzmann equations, 
without collisions, for f+, and Maxwell's equations which involve integrals 
of f+ in the charge density and current. The boundary conditions given at 
x = : oo, are Ex = 0, Ey ~ 0. Ez = 0, Hx = 0, Hy = 0, Hz # 0. f+ = f +a 
f_ = ~ when ff are any isotropic distributions consistent with the constant 
state. 

Nothing is known about the solution of the full problem but there are 
four alternative, possibilities. a) No solution exists. b) There is a shock 
solution i. e. a solution which approaches a constant state as x - oo which 
is different from the given state at - co. c) The solution is a pulse, i.e. 
the state at + oo is the same as the state at - "°· d) The solution does not 
tend to a constant state at + oo. 

Within the approximation based on a large ion to electron mass ratio, 
there is no strict shock solution b). For a certain range of parameters 
a) occurs and for other ranges either alternatives c) or d). Alternative c) 
bears no relation to a shock. But in d) one finds, at + ao, fields that are 
periodic in x; the pressure oscillates around a mean pressure much higher 
than at x = - oo. If the oscillations are small not much energy is in the 
vibrations. We may interpret such solutions as shock solutions. In calcu-
lating them we find that they correspond to a low /3 and a big increase in 
ion temperature. 

For the approximation we set ,Jm_ Im+ = E, introduce as a fixed 
length the geometric mean of the distances an ion or electron moves forward 

1. C. S. Morawetz, "Steady State St:ock Model," Controlled Thermonuclear 
Conference, Washington, D. C., February, 1958. TID-7558. See also a 
summary in C. S. Gardner et al., "Hydromagnetic Shock Waves in 
High-Temperature Plasmas," Papers Presented at the Second Interna-
tional Conference on the Peaceful Uses of Atomic Energy, Geneva, Sep-
tember 1958, NY0-2538, Institute of Math. Sci., NYU, Jan. 1959. 
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in a gyroperiod and no'rmalize the fields so that the magnetic field is of 
order 1 but the charge separation field is of order 1/E. 

The functions f+ can be found as asymptotic series in E. For elec-
trons the procedure follows the method of Gardner-Kruskal et al. For ions 
the expansion is in some resfiects more straightforward. However we must 
take f.f =exp - K( (1- u)2+ v ) for (1- u)2 + v2 < R2, and ff= 0 for 
(1- u)2 + v2 > R2. Here K is a dimensionless constant which measures the 
ratio of thermal energy to the energy of translation, K......., 1/2f3. The mean 
velocity at - oo is normalized to 1 and R, the cut-off radius, is a number 
< 1 which is chosen differently for different problems. (There is one other 
dimensionless parameter A the ratio of mean speed to Alfven speed at - oo.) 

For any problem we take A, K fixed and study the solution to lowest 
order in E for different values of R. For R small all ions pass through 
without turning around and the flow returns to the state it was in at - oo 
(case c)). As we increase R we reach a critical value beyond which there 
are always some ions that turn around. Thus theoretically we get solutions 
when the mean velocity and magnetic field change monotonically. Because 
of the characteristic length the electrons are adiabatic and the ions are 
heated, 

If we let R - 1 we can again show that our approximation breaks down. 
That is, it is not valid for ions that just barely escape turning around in the 
constant field at - oo. It is therefore necessary in computing to have R big 
enough so some ions turn around and small enough so approximation is valid. 

This means that if we want to picture our cut-off Maxw;ellian distribu-
tion as an approximation to a true Maxwellian, then the distribution function 
must be very narrow, i.e., K is big or /3 small. 

The computations were made with two additional assumptions: 1) The 
total charge density is zero -- there is virtually no loss of accuracy. 
2) Where the change in magnetic field is small and the electric field is of 
order 1 particle paths have been computed as if the fields were constant. ,, 

With A = 1. 4, K = 4 we find that the field quantities are very sensi-
tive to the value of R, see Figures 1, 2, 3. In fact solutions cease to exist 
for R> .45. 

With A= 1. 4, K = 75 we find thatas R increasesweapproacharegion 
where the fields vary little with R, Figures 4, 5, 6. Here we get finite 
oscillations about markedly increased mean values. We may expect this 
solution to be a good approximation to a true solution of the full problem . 
The initial increase of H with no change in T7 (essentially the charge separa-
tion field) takes place in a kind of boundary layer of width 0( 1 / e:) ahead of 
the main transition region. In fact this boundary layer plays a fundamental 
role in analyzing the motion of the ions . 
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INCREASED DISPERSION AND RESISTIVITY 
IN A NONSTEADY PLASMA~~ 

Harold Grad 
Institute of Mathematical Sciences 

New York University 

PAPER 33 

In thermodynamic equilibrium, charge fluctuations in a 
plasma give rise to electric field fluctuations, i.e. they 
excite plasma oscillations. These oscillations are damped 
quickly if the wave length is comparable to the Debye length 
or is smaller, but large wave lengths are only slightly damped. 
This is compensated by the fact that the excitation is small 
for large wave lengths. These fluctuating electric fields or, 
equivalently, encounters between particles give rise to the 
dynamical friction and dispersion coefficients in the Fokker-
Planck equation. 

In a non-equilibrium state, there are external (as 
distinguished from thermal charge fluctuation) sources of 
excitation. These give rise to additional plasma oscillations 
superposed on the thermal background. These oscillations can 
be the consequence of instabilities or merely the result of 
complicated initial conditions or external influences brought 
to bear on the plasma. The large wave length components (larger 
than the Debye length) can be very slowly damped and can there-
fore be present with much larger amplitude than is expected 
from thermodynamic considerations. 

To estimate the effect of such externally induced plasma 
oscillations on the value of the dynamical friction and disper-
sion coefficients requires an estimate of the magnitude of the 
fluctuating field and of the correlation time as seen by a 
single particle. For example, a coherent, precisely periodic 
plasma oscillation will produce no net effect on a constant-
speed particle since one half-cycle exactly cancels the next. 
Let us assume that a certain ntLmber, v, of plasma oscillation 
periods is the correlation time; i.e. the fluctuating electric 
field is coherent over v wave lengths. In one half-cycle, the 

~~~ The work presented in this paper is supported by the AEC 
Computing and Applied Mathematics Center, Institute of 
Mathematical Sciences, New York University, under Contract 
AT(J0-1)-1480 with the u. s. Atomic Energy Commission. 

221 



impulse on a particle of mass M is 

O(Mv) = eEf-0_ (1) 

where E is a representative amplitude of the electric field and 
il is the plasma frequency, 

(2) 

( m is t.tie mass of the electron.) In one correlation -time, 
~ = v/Jl, the net, uncancelled impulse has the same order as in 
Eq. 1. After a time large compared to 1:, say Nt', the root-mean-
square expected impulse has a magnitude lN times the value given 
in Eq. 1, 

• 

We set 6v = vkT7M and solve for the value of N, 

= £lMkT = !1_ nkT • 
No ~2E2 m )(.

0
E2 

(3) 

( 4) 

This is the number of correlation times required to produce a 
deflection of 90° in a representative particle; N07: is ~a""n;o....,,_ 
equivalent collision or thermalization time, and N0t' y'kT/M 
is an equivalent mean-free-path, 

"' _ ! (kT}
2 

L~' = N
0
t' y'kT/M - \I -

m de2E2 

Here d is the Debye length, 
2 kT k: kT 

d - - 0 
-~-~ m.O: ne 

{ 5) 

(6) 

"" We compare L with the mean-free-path for thermalization of the 
particles M among themselves which can be expressed as 

and obtain 

= >£,0 kTd
2 

L e2logA 
, 

L* A IM kT ""L" = v log1t~m: < 2 3> • 
~ E·d 

0 

(7) 

( 8) 

The denominator of the last factor is the elect.rostatic energy 
in a Debye sphere. 

The maximum electric field that one can expect to arise 
in a plasma has the order 

eEd = kT 
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which yields the minimum value for L~'/L, 

L'' A~ l L = v logL l. - ~ m nd~ 
( 10) 

A reasonable estimate for v might be 10· log J\ is on the 
order of 15; in a high temperature plasma nd~ (the num~er of 
particles in a Debye sphere) may be on the or,der of 10 • We 
conclude that, for deuterons (M/m ,--.J 3600), v·· might be as small 
as L, signifying that the extraneous electric fields are as 
important ~s the thermal fluctuations, whereas for electrons '< 
(M,...., m), L'' can be even much smaller than L. Alternatively, L"A 
becomes comparable to L for electrons when the fluctuating 
electric field is as small as one per cent of·the maximum that 
can be encolllltered. 

We can draw the following conclusions. In a boundary layer 
or sheath where we know that the steady value of E is comparable 
to the "maximum" value in Eq. 9, even a very slight unsteadiness 
of the sheath can increase markedly the dispersion (and therefore 
the resistivity). In the interior of the plasma, it is possible 
for moderate amplitude electric field oscillations to have the 
same effect. In the early stages of mixing of crossed or reversed 
magnetic fields, it is likely that a large part of the current is 
confined to a narrow region in which there is also a very large 
electric field. This situation could lead to an excessively 
large resistivity of the plasma itself. Since this phenomenon is 
inherently inaccessible to precise theoretical computation, great 
caution should be exercised in employing resistivity measurements 
as a diagnostic tool. 
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PAPER 34 

STABILITY OF RADIOFREQUENCY PLASMA CONFINEMENT 

J. W. Butler 
Argonne National Laboratory 

Abstract 

The stability of confinement of a conducting fluid by rf 
electromagnetic fields is investigated statically in plane geometry 
by assuming that only time averaged field pressures need be considered. 
It is found that the set of perturbation wave numbers can be divided 
into stable and unstable intervals. In general, the confinement is 
stable if the wave length of the boundary deformations is suf'ficiently 
short. Similar results are obtained if various steady magnetic 
fields are also postulated to be present. 

The problem and solution discussed below are part of a general study of the 
possibility of plasma confinement by electromagnetic fields in which the frequency 
is high en£ugh to require consideration of displacement currents ~n the field 
equations. The same problem has also been treated by E. Weibel. 

Perhaps the simplest problem of the type mentioned in tne title is that 
exemplified by Fig. 1. The plasma is assumed to be a perfectly conducting 
fluid, leading to a sharp interface between plasma and field regions. If an 
electromagnetic field consisting of transverse standing waves is excited in the 
space between the fluid and the wall, and if the configuration is constrained 
to.be invariant under lateral translations, it is easy to show that an equilib-
rium interface position exists, provided only that the internal energy of the 
fluid increases indefinitely with decreasing volume. Here one needs an adiabatic 
theorem for resonant cavities which states that the quantity 

total field energy 
field frequency 

remains constant under slow deformations of the cavity walls.3 Clearly, the 
equilibrium interface may be located at z=O. 

1. 

2. 

3. 

J. W. Butler, Bull. Am. Phys. Soc., Ser. II, 4, 152 (1959) (Abstract). 

Erich S. Weibel, On the Confinement of Plasma ]2z Standing Electromagnetic 
Waves, ARL-57-1009 (1957). 

F. E. Borgnis and C. H. Papas, "Electromagnetic Waveguides", Handbuch der 
Physik 16, p. 412 (1958). 
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The next step is to remove the translation invariance in the x direction 
and see if the equilibrium state is thereby altered. For a first order treat-
ment this is sufficient, since as will be seen, the field can be rotated to 
any desired orientation. Accordingly, take the new interface to be the 
corrugated surface z = 5sinpx; the normal is evidently of the form ,n = (0(5),0,l). 
Components of vectors are listed in conventional x,y,z order. 

To calculate the perturbed field to first order in 5, form the scalar 
function 

et = sinkz - 5ksinp:x: siru;.x(d-z) , 
sinh'Kd 

where x2 = p2 - k2 and k = n/ d = oo/ c, the angular field frequency divided by light 
speed. The transverse electric phasor is then constructed as 

in which a and b are arbitrary complex numbers and Ez is given by 
z 

J a . 
- du(a ~et) - 5 ~ cospx coshxd = 0 (6), ax ')( 

0 

coming from the divergence condition div!t = O. This electric vector then 
satisfies the required field equations 

172!-t. + k2!t = o, 
n x ~t = 0(52 ) at z = osinp:x:, 

at z = d, 

and, of course, div!t, = O. It is possible to construct the perturbed field 
without changing the wave number k because the perturbation considered does not 
change the volume and hence, to first order in 6, leaves the resonant frequency 
unaltered. 

The remainder of the calculation is routine. The transverse magnetic phasor 
is computed from Maxwell's equation 

~ = ~ curl!t_, 

and the field pressure acting on the deformed surface is evaluated as 

P rf = ( Zµ ~ · ~ *), 
where ]s is the value of ~ at the surface z = osinpx, the symbol < > denotes a 
time average, and * is used to indicate complex conjugation. The electric 
field nakes only a second order contribution to the stress tensor at the 
surface, since the normal and tangential components of .§t, are respectively of 
order 5 and 52. When evaluated in detail, the expression for Prf turns out 
to be 

(1) 

which indicates first order stability whenever the quantity in { } is positive. 

The resulting stability diagram is as shown in Fig. 2; the hatched zones 
contain stable parameter values. 
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In the particular case of circular field polarization, one therefore has 
instability in the p intervals defined by 

(2) 

and 

For elliptical polarization, it is clear that actual stability information can 
only be obtained by orienting the major axis of the electric polarization ellipse 
in the x direction, since this is the least stable alignment and therefore the 
most favorable for the growth of surface disturbances. This is accomplished by 
assigning a real value to a and setting b = ira, (0 !: r ~ 1), changing the inequality 
2 to read 

k2 < p2 < ~ :tc2. 
r 

It is seen that the upper stability zone in the diagram evaporates as r-+0; 
the lower one, however, is una:f'fected. On the line ~ = k2, there is apparently 
no first order solution to the field equations~ 

Stability can be.restored in the plane polarized situation by introducing 
a steady transverse magnetic field into the cavity region which is perpendicular 
to the rf magnetic field. Indeed, this causes the resultant field vector at 
the plasma S1ll'face to oscillate in direction, which might be expected to have 
a stabilizing influence similar to that. of rotation in the pure rf case. 

By letting k~O in Eq. 1 and suitably reinterpreting the numbers a and b, 
one obtains the pressure distribution due to the perturbed de field as 

(3) 

in which bx and bv are the components of the undisturbed magnetic field. 
Returning to Eq. 1, let a and b have real values.and specify the direction of 
the resulting alternating magnetic vector by s2 = b2/(a2 + b2~; orthogonality 
of the rf and de fields then requires bx2/(bx2 + bu-2) = 1 - s • Ma.king these 
substitutions and adding Eqs. 1 and 3 yields the stability criterion 

. ~(s2P2-k2)cothxd + r2(1-s2)p cothpd > o, ,, (4) 
wherein r2 is the ratio of de to rf field pressure. The stability chart 
resulting from this ine~uality is quite similar to Fig. 4 for reasonable parameter 
values. Thus, taking f = 1 and approximating cothxd ... cothpd ... 1, it is found 
that 4 is again satisfied for ~ > 2k2, whatever the value of s. Inspection 
also shows that, by making r2 larger, the instability zones can be reduced in 
size but not eliminated~ the inequality can always be reversed by choosing i2 
slightly greater than k • 

If steady magnetic fields inside the "plasma" are allowed, it becomes 
necessary to inquire into the kinematics of the fluid-field mixture. Further-
more, for a finite thickness, boundary conditions must be applied at the 
interface z = - R. (see Fig. 1), which makes further analysis of this particular 
configuration somewhat artificial as applied to actual plasma confinement. One 
moderately interesting problem, however, is obtained by restricting the unper-
turbed magnetic field inside the plasma to have only a z component. The results 
in this case show that, for an infinite thickness (j = ~), the field component 
bz has no influence on stability, although there is a favourable effect if the 
thickness is finite and the region z < -l is assumed to be a rigid conductor. 

227 




